Properties

Label 8004.785
Modulus $8004$
Conductor $2001$
Order $308$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8004, base_ring=CyclotomicField(308)) M = H._module chi = DirichletCharacter(H, M([0,154,224,11]))
 
Copy content pari:[g,chi] = znchar(Mod(785,8004))
 

Basic properties

Modulus: \(8004\)
Conductor: \(2001\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(308\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2001}(785,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8004.dq

\(\chi_{8004}(77,\cdot)\) \(\chi_{8004}(101,\cdot)\) \(\chi_{8004}(269,\cdot)\) \(\chi_{8004}(305,\cdot)\) \(\chi_{8004}(317,\cdot)\) \(\chi_{8004}(449,\cdot)\) \(\chi_{8004}(485,\cdot)\) \(\chi_{8004}(533,\cdot)\) \(\chi_{8004}(653,\cdot)\) \(\chi_{8004}(785,\cdot)\) \(\chi_{8004}(809,\cdot)\) \(\chi_{8004}(1001,\cdot)\) \(\chi_{8004}(1025,\cdot)\) \(\chi_{8004}(1133,\cdot)\) \(\chi_{8004}(1145,\cdot)\) \(\chi_{8004}(1181,\cdot)\) \(\chi_{8004}(1313,\cdot)\) \(\chi_{8004}(1337,\cdot)\) \(\chi_{8004}(1361,\cdot)\) \(\chi_{8004}(1373,\cdot)\) \(\chi_{8004}(1481,\cdot)\) \(\chi_{8004}(1577,\cdot)\) \(\chi_{8004}(1613,\cdot)\) \(\chi_{8004}(1685,\cdot)\) \(\chi_{8004}(1697,\cdot)\) \(\chi_{8004}(1829,\cdot)\) \(\chi_{8004}(1853,\cdot)\) \(\chi_{8004}(1925,\cdot)\) \(\chi_{8004}(1961,\cdot)\) \(\chi_{8004}(2009,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{308})$
Fixed field: Number field defined by a degree 308 polynomial (not computed)

Values on generators

\((4003,2669,3133,553)\) → \((1,-1,e\left(\frac{8}{11}\right),e\left(\frac{1}{28}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(25\)\(31\)\(35\)\(37\)
\( \chi_{ 8004 }(785, a) \) \(1\)\(1\)\(e\left(\frac{1}{77}\right)\)\(e\left(\frac{19}{77}\right)\)\(e\left(\frac{289}{308}\right)\)\(e\left(\frac{127}{154}\right)\)\(e\left(\frac{15}{44}\right)\)\(e\left(\frac{71}{308}\right)\)\(e\left(\frac{2}{77}\right)\)\(e\left(\frac{123}{308}\right)\)\(e\left(\frac{20}{77}\right)\)\(e\left(\frac{117}{308}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8004 }(785,a) \;\) at \(\;a = \) e.g. 2