Properties

Label 8004.dq
Modulus $8004$
Conductor $2001$
Order $308$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8004, base_ring=CyclotomicField(308)) M = H._module chi = DirichletCharacter(H, M([0,154,84,99])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(77,8004)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8004\)
Conductor: \(2001\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(308\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2001.bv
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{308})$
Fixed field: Number field defined by a degree 308 polynomial (not computed)

First 31 of 120 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(25\) \(31\) \(35\) \(37\)
\(\chi_{8004}(77,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{77}\right)\) \(e\left(\frac{3}{77}\right)\) \(e\left(\frac{305}{308}\right)\) \(e\left(\frac{93}{154}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{303}{308}\right)\) \(e\left(\frac{53}{77}\right)\) \(e\left(\frac{295}{308}\right)\) \(e\left(\frac{68}{77}\right)\) \(e\left(\frac{213}{308}\right)\)
\(\chi_{8004}(101,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{77}\right)\) \(e\left(\frac{16}{77}\right)\) \(e\left(\frac{61}{308}\right)\) \(e\left(\frac{111}{154}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{307}{308}\right)\) \(e\left(\frac{26}{77}\right)\) \(e\left(\frac{59}{308}\right)\) \(e\left(\frac{29}{77}\right)\) \(e\left(\frac{289}{308}\right)\)
\(\chi_{8004}(269,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{77}\right)\) \(e\left(\frac{15}{77}\right)\) \(e\left(\frac{139}{308}\right)\) \(e\left(\frac{3}{154}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{129}{308}\right)\) \(e\left(\frac{34}{77}\right)\) \(e\left(\frac{89}{308}\right)\) \(e\left(\frac{32}{77}\right)\) \(e\left(\frac{295}{308}\right)\)
\(\chi_{8004}(305,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{77}\right)\) \(e\left(\frac{9}{77}\right)\) \(e\left(\frac{299}{308}\right)\) \(e\left(\frac{125}{154}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{293}{308}\right)\) \(e\left(\frac{5}{77}\right)\) \(e\left(\frac{269}{308}\right)\) \(e\left(\frac{50}{77}\right)\) \(e\left(\frac{23}{308}\right)\)
\(\chi_{8004}(317,\cdot)\) \(1\) \(1\) \(e\left(\frac{64}{77}\right)\) \(e\left(\frac{61}{77}\right)\) \(e\left(\frac{247}{308}\right)\) \(e\left(\frac{43}{154}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{1}{308}\right)\) \(e\left(\frac{51}{77}\right)\) \(e\left(\frac{249}{308}\right)\) \(e\left(\frac{48}{77}\right)\) \(e\left(\frac{19}{308}\right)\)
\(\chi_{8004}(449,\cdot)\) \(1\) \(1\) \(e\left(\frac{48}{77}\right)\) \(e\left(\frac{65}{77}\right)\) \(e\left(\frac{89}{308}\right)\) \(e\left(\frac{13}{154}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{251}{308}\right)\) \(e\left(\frac{19}{77}\right)\) \(e\left(\frac{283}{308}\right)\) \(e\left(\frac{36}{77}\right)\) \(e\left(\frac{149}{308}\right)\)
\(\chi_{8004}(485,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{77}\right)\) \(e\left(\frac{1}{77}\right)\) \(e\left(\frac{153}{308}\right)\) \(e\left(\frac{31}{154}\right)\) \(e\left(\frac{39}{44}\right)\) \(e\left(\frac{255}{308}\right)\) \(e\left(\frac{69}{77}\right)\) \(e\left(\frac{47}{308}\right)\) \(e\left(\frac{74}{77}\right)\) \(e\left(\frac{225}{308}\right)\)
\(\chi_{8004}(533,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{77}\right)\) \(e\left(\frac{13}{77}\right)\) \(e\left(\frac{141}{308}\right)\) \(e\left(\frac{95}{154}\right)\) \(e\left(\frac{23}{44}\right)\) \(e\left(\frac{235}{308}\right)\) \(e\left(\frac{50}{77}\right)\) \(e\left(\frac{303}{308}\right)\) \(e\left(\frac{38}{77}\right)\) \(e\left(\frac{153}{308}\right)\)
\(\chi_{8004}(653,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{77}\right)\) \(e\left(\frac{16}{77}\right)\) \(e\left(\frac{215}{308}\right)\) \(e\left(\frac{111}{154}\right)\) \(e\left(\frac{41}{44}\right)\) \(e\left(\frac{153}{308}\right)\) \(e\left(\frac{26}{77}\right)\) \(e\left(\frac{213}{308}\right)\) \(e\left(\frac{29}{77}\right)\) \(e\left(\frac{135}{308}\right)\)
\(\chi_{8004}(785,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{77}\right)\) \(e\left(\frac{19}{77}\right)\) \(e\left(\frac{289}{308}\right)\) \(e\left(\frac{127}{154}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{71}{308}\right)\) \(e\left(\frac{2}{77}\right)\) \(e\left(\frac{123}{308}\right)\) \(e\left(\frac{20}{77}\right)\) \(e\left(\frac{117}{308}\right)\)
\(\chi_{8004}(809,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{77}\right)\) \(e\left(\frac{46}{77}\right)\) \(e\left(\frac{31}{308}\right)\) \(e\left(\frac{117}{154}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{257}{308}\right)\) \(e\left(\frac{17}{77}\right)\) \(e\left(\frac{237}{308}\right)\) \(e\left(\frac{16}{77}\right)\) \(e\left(\frac{263}{308}\right)\)
\(\chi_{8004}(1001,\cdot)\) \(1\) \(1\) \(e\left(\frac{48}{77}\right)\) \(e\left(\frac{65}{77}\right)\) \(e\left(\frac{243}{308}\right)\) \(e\left(\frac{13}{154}\right)\) \(e\left(\frac{5}{44}\right)\) \(e\left(\frac{97}{308}\right)\) \(e\left(\frac{19}{77}\right)\) \(e\left(\frac{129}{308}\right)\) \(e\left(\frac{36}{77}\right)\) \(e\left(\frac{303}{308}\right)\)
\(\chi_{8004}(1025,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{77}\right)\) \(e\left(\frac{73}{77}\right)\) \(e\left(\frac{235}{308}\right)\) \(e\left(\frac{107}{154}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{289}{308}\right)\) \(e\left(\frac{32}{77}\right)\) \(e\left(\frac{197}{308}\right)\) \(e\left(\frac{12}{77}\right)\) \(e\left(\frac{255}{308}\right)\)
\(\chi_{8004}(1133,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{77}\right)\) \(e\left(\frac{75}{77}\right)\) \(e\left(\frac{233}{308}\right)\) \(e\left(\frac{15}{154}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{183}{308}\right)\) \(e\left(\frac{16}{77}\right)\) \(e\left(\frac{291}{308}\right)\) \(e\left(\frac{6}{77}\right)\) \(e\left(\frac{89}{308}\right)\)
\(\chi_{8004}(1145,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{77}\right)\) \(e\left(\frac{72}{77}\right)\) \(e\left(\frac{5}{308}\right)\) \(e\left(\frac{153}{154}\right)\) \(e\left(\frac{3}{44}\right)\) \(e\left(\frac{111}{308}\right)\) \(e\left(\frac{40}{77}\right)\) \(e\left(\frac{227}{308}\right)\) \(e\left(\frac{15}{77}\right)\) \(e\left(\frac{261}{308}\right)\)
\(\chi_{8004}(1181,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{77}\right)\) \(e\left(\frac{36}{77}\right)\) \(e\left(\frac{41}{308}\right)\) \(e\left(\frac{115}{154}\right)\) \(e\left(\frac{7}{44}\right)\) \(e\left(\frac{171}{308}\right)\) \(e\left(\frac{20}{77}\right)\) \(e\left(\frac{75}{308}\right)\) \(e\left(\frac{46}{77}\right)\) \(e\left(\frac{169}{308}\right)\)
\(\chi_{8004}(1313,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{77}\right)\) \(e\left(\frac{1}{77}\right)\) \(e\left(\frac{307}{308}\right)\) \(e\left(\frac{31}{154}\right)\) \(e\left(\frac{17}{44}\right)\) \(e\left(\frac{101}{308}\right)\) \(e\left(\frac{69}{77}\right)\) \(e\left(\frac{201}{308}\right)\) \(e\left(\frac{74}{77}\right)\) \(e\left(\frac{71}{308}\right)\)
\(\chi_{8004}(1337,\cdot)\) \(1\) \(1\) \(e\left(\frac{12}{77}\right)\) \(e\left(\frac{74}{77}\right)\) \(e\left(\frac{157}{308}\right)\) \(e\left(\frac{61}{154}\right)\) \(e\left(\frac{15}{44}\right)\) \(e\left(\frac{159}{308}\right)\) \(e\left(\frac{24}{77}\right)\) \(e\left(\frac{167}{308}\right)\) \(e\left(\frac{9}{77}\right)\) \(e\left(\frac{249}{308}\right)\)
\(\chi_{8004}(1361,\cdot)\) \(1\) \(1\) \(e\left(\frac{36}{77}\right)\) \(e\left(\frac{68}{77}\right)\) \(e\left(\frac{163}{308}\right)\) \(e\left(\frac{29}{154}\right)\) \(e\left(\frac{1}{44}\right)\) \(e\left(\frac{169}{308}\right)\) \(e\left(\frac{72}{77}\right)\) \(e\left(\frac{193}{308}\right)\) \(e\left(\frac{27}{77}\right)\) \(e\left(\frac{131}{308}\right)\)
\(\chi_{8004}(1373,\cdot)\) \(1\) \(1\) \(e\left(\frac{72}{77}\right)\) \(e\left(\frac{59}{77}\right)\) \(e\left(\frac{95}{308}\right)\) \(e\left(\frac{135}{154}\right)\) \(e\left(\frac{13}{44}\right)\) \(e\left(\frac{261}{308}\right)\) \(e\left(\frac{67}{77}\right)\) \(e\left(\frac{1}{308}\right)\) \(e\left(\frac{54}{77}\right)\) \(e\left(\frac{31}{308}\right)\)
\(\chi_{8004}(1481,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{77}\right)\) \(e\left(\frac{5}{77}\right)\) \(e\left(\frac{149}{308}\right)\) \(e\left(\frac{1}{154}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{43}{308}\right)\) \(e\left(\frac{37}{77}\right)\) \(e\left(\frac{235}{308}\right)\) \(e\left(\frac{62}{77}\right)\) \(e\left(\frac{201}{308}\right)\)
\(\chi_{8004}(1577,\cdot)\) \(1\) \(1\) \(e\left(\frac{60}{77}\right)\) \(e\left(\frac{62}{77}\right)\) \(e\left(\frac{169}{308}\right)\) \(e\left(\frac{151}{154}\right)\) \(e\left(\frac{31}{44}\right)\) \(e\left(\frac{179}{308}\right)\) \(e\left(\frac{43}{77}\right)\) \(e\left(\frac{219}{308}\right)\) \(e\left(\frac{45}{77}\right)\) \(e\left(\frac{13}{308}\right)\)
\(\chi_{8004}(1613,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{77}\right)\) \(e\left(\frac{41}{77}\right)\) \(e\left(\frac{267}{308}\right)\) \(e\left(\frac{39}{154}\right)\) \(e\left(\frac{37}{44}\right)\) \(e\left(\frac{137}{308}\right)\) \(e\left(\frac{57}{77}\right)\) \(e\left(\frac{233}{308}\right)\) \(e\left(\frac{31}{77}\right)\) \(e\left(\frac{139}{308}\right)\)
\(\chi_{8004}(1685,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{77}\right)\) \(e\left(\frac{53}{77}\right)\) \(e\left(\frac{101}{308}\right)\) \(e\left(\frac{103}{154}\right)\) \(e\left(\frac{43}{44}\right)\) \(e\left(\frac{271}{308}\right)\) \(e\left(\frac{38}{77}\right)\) \(e\left(\frac{27}{308}\right)\) \(e\left(\frac{72}{77}\right)\) \(e\left(\frac{221}{308}\right)\)
\(\chi_{8004}(1697,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{77}\right)\) \(e\left(\frac{72}{77}\right)\) \(e\left(\frac{159}{308}\right)\) \(e\left(\frac{153}{154}\right)\) \(e\left(\frac{25}{44}\right)\) \(e\left(\frac{265}{308}\right)\) \(e\left(\frac{40}{77}\right)\) \(e\left(\frac{73}{308}\right)\) \(e\left(\frac{15}{77}\right)\) \(e\left(\frac{107}{308}\right)\)
\(\chi_{8004}(1829,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{77}\right)\) \(e\left(\frac{54}{77}\right)\) \(e\left(\frac{177}{308}\right)\) \(e\left(\frac{57}{154}\right)\) \(e\left(\frac{27}{44}\right)\) \(e\left(\frac{295}{308}\right)\) \(e\left(\frac{30}{77}\right)\) \(e\left(\frac{151}{308}\right)\) \(e\left(\frac{69}{77}\right)\) \(e\left(\frac{61}{308}\right)\)
\(\chi_{8004}(1853,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{77}\right)\) \(e\left(\frac{18}{77}\right)\) \(e\left(\frac{59}{308}\right)\) \(e\left(\frac{19}{154}\right)\) \(e\left(\frac{9}{44}\right)\) \(e\left(\frac{201}{308}\right)\) \(e\left(\frac{10}{77}\right)\) \(e\left(\frac{153}{308}\right)\) \(e\left(\frac{23}{77}\right)\) \(e\left(\frac{123}{308}\right)\)
\(\chi_{8004}(1925,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{77}\right)\) \(e\left(\frac{48}{77}\right)\) \(e\left(\frac{29}{308}\right)\) \(e\left(\frac{25}{154}\right)\) \(e\left(\frac{35}{44}\right)\) \(e\left(\frac{151}{308}\right)\) \(e\left(\frac{1}{77}\right)\) \(e\left(\frac{23}{308}\right)\) \(e\left(\frac{10}{77}\right)\) \(e\left(\frac{97}{308}\right)\)
\(\chi_{8004}(1961,\cdot)\) \(1\) \(1\) \(e\left(\frac{74}{77}\right)\) \(e\left(\frac{20}{77}\right)\) \(e\left(\frac{211}{308}\right)\) \(e\left(\frac{81}{154}\right)\) \(e\left(\frac{21}{44}\right)\) \(e\left(\frac{249}{308}\right)\) \(e\left(\frac{71}{77}\right)\) \(e\left(\frac{93}{308}\right)\) \(e\left(\frac{17}{77}\right)\) \(e\left(\frac{111}{308}\right)\)
\(\chi_{8004}(2009,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{77}\right)\) \(e\left(\frac{36}{77}\right)\) \(e\left(\frac{195}{308}\right)\) \(e\left(\frac{115}{154}\right)\) \(e\left(\frac{29}{44}\right)\) \(e\left(\frac{17}{308}\right)\) \(e\left(\frac{20}{77}\right)\) \(e\left(\frac{229}{308}\right)\) \(e\left(\frac{46}{77}\right)\) \(e\left(\frac{15}{308}\right)\)
\(\chi_{8004}(2033,\cdot)\) \(1\) \(1\) \(e\left(\frac{68}{77}\right)\) \(e\left(\frac{60}{77}\right)\) \(e\left(\frac{17}{308}\right)\) \(e\left(\frac{89}{154}\right)\) \(e\left(\frac{19}{44}\right)\) \(e\left(\frac{131}{308}\right)\) \(e\left(\frac{59}{77}\right)\) \(e\left(\frac{279}{308}\right)\) \(e\left(\frac{51}{77}\right)\) \(e\left(\frac{25}{308}\right)\)