sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([1,0]))
pari:[g,chi] = znchar(Mod(7,8))
\(\chi_{8}(7,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((7,5)\) → \((-1,1)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) |
\( \chi_{ 8 }(7, a) \) |
\(-1\) | \(1\) | \(-1\) | \(1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)
Additional information
This is the first example of a Dirichlet character that is not minimal.