![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(783, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([70,45]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(783, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([70,45]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(241,783))
        pari:[g,chi] = znchar(Mod(241,783))
         
     
    
  
   | Modulus: | \(783\) |  | 
   | Conductor: | \(783\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(126\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{783}(4,\cdot)\)
  \(\chi_{783}(13,\cdot)\)
  \(\chi_{783}(22,\cdot)\)
  \(\chi_{783}(34,\cdot)\)
  \(\chi_{783}(67,\cdot)\)
  \(\chi_{783}(121,\cdot)\)
  \(\chi_{783}(151,\cdot)\)
  \(\chi_{783}(178,\cdot)\)
  \(\chi_{783}(187,\cdot)\)
  \(\chi_{783}(196,\cdot)\)
  \(\chi_{783}(238,\cdot)\)
  \(\chi_{783}(241,\cdot)\)
  \(\chi_{783}(265,\cdot)\)
  \(\chi_{783}(274,\cdot)\)
  \(\chi_{783}(283,\cdot)\)
  \(\chi_{783}(295,\cdot)\)
  \(\chi_{783}(328,\cdot)\)
  \(\chi_{783}(382,\cdot)\)
  \(\chi_{783}(412,\cdot)\)
  \(\chi_{783}(439,\cdot)\)
  \(\chi_{783}(448,\cdot)\)
  \(\chi_{783}(457,\cdot)\)
  \(\chi_{783}(499,\cdot)\)
  \(\chi_{783}(502,\cdot)\)
  \(\chi_{783}(526,\cdot)\)
  \(\chi_{783}(535,\cdot)\)
  \(\chi_{783}(544,\cdot)\)
  \(\chi_{783}(556,\cdot)\)
  \(\chi_{783}(589,\cdot)\)
  \(\chi_{783}(643,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((407,379)\) → \((e\left(\frac{5}{9}\right),e\left(\frac{5}{14}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) | 
    
    
      | \( \chi_{ 783 }(241, a) \) | \(1\) | \(1\) | \(e\left(\frac{115}{126}\right)\) | \(e\left(\frac{52}{63}\right)\) | \(e\left(\frac{40}{63}\right)\) | \(e\left(\frac{11}{63}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{19}{126}\right)\) | \(e\left(\frac{55}{63}\right)\) | \(e\left(\frac{11}{126}\right)\) | \(e\left(\frac{41}{63}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)