Properties

Label 783.22
Modulus $783$
Conductor $783$
Order $126$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([98,117]))
 
Copy content pari:[g,chi] = znchar(Mod(22,783))
 

Basic properties

Modulus: \(783\)
Conductor: \(783\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 783.bf

\(\chi_{783}(4,\cdot)\) \(\chi_{783}(13,\cdot)\) \(\chi_{783}(22,\cdot)\) \(\chi_{783}(34,\cdot)\) \(\chi_{783}(67,\cdot)\) \(\chi_{783}(121,\cdot)\) \(\chi_{783}(151,\cdot)\) \(\chi_{783}(178,\cdot)\) \(\chi_{783}(187,\cdot)\) \(\chi_{783}(196,\cdot)\) \(\chi_{783}(238,\cdot)\) \(\chi_{783}(241,\cdot)\) \(\chi_{783}(265,\cdot)\) \(\chi_{783}(274,\cdot)\) \(\chi_{783}(283,\cdot)\) \(\chi_{783}(295,\cdot)\) \(\chi_{783}(328,\cdot)\) \(\chi_{783}(382,\cdot)\) \(\chi_{783}(412,\cdot)\) \(\chi_{783}(439,\cdot)\) \(\chi_{783}(448,\cdot)\) \(\chi_{783}(457,\cdot)\) \(\chi_{783}(499,\cdot)\) \(\chi_{783}(502,\cdot)\) \(\chi_{783}(526,\cdot)\) \(\chi_{783}(535,\cdot)\) \(\chi_{783}(544,\cdot)\) \(\chi_{783}(556,\cdot)\) \(\chi_{783}(589,\cdot)\) \(\chi_{783}(643,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((407,379)\) → \((e\left(\frac{7}{9}\right),e\left(\frac{13}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 783 }(22, a) \) \(1\)\(1\)\(e\left(\frac{89}{126}\right)\)\(e\left(\frac{26}{63}\right)\)\(e\left(\frac{20}{63}\right)\)\(e\left(\frac{37}{63}\right)\)\(e\left(\frac{5}{42}\right)\)\(e\left(\frac{1}{42}\right)\)\(e\left(\frac{41}{126}\right)\)\(e\left(\frac{59}{63}\right)\)\(e\left(\frac{37}{126}\right)\)\(e\left(\frac{52}{63}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 783 }(22,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 783 }(22,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 783 }(22,·),\chi_{ 783 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 783 }(22,·)) \;\) at \(\; a,b = \) e.g. 1,2