Properties

Label 7803.bg
Modulus $7803$
Conductor $289$
Order $68$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(68)) M = H._module chi = DirichletCharacter(H, M([0,63])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(55,7803)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7803\)
Conductor: \(289\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(68\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 289.h
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{68})$
Fixed field: Number field defined by a degree 68 polynomial

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{7803}(55,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{2}{17}\right)\)
\(\chi_{7803}(217,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{31}{68}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{1}{68}\right)\) \(e\left(\frac{4}{17}\right)\)
\(\chi_{7803}(514,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{9}{68}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{61}{68}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{31}{68}\right)\) \(e\left(\frac{5}{17}\right)\)
\(\chi_{7803}(676,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{65}{68}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{1}{17}\right)\)
\(\chi_{7803}(973,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{1}{68}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{8}{17}\right)\)
\(\chi_{7803}(1135,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{57}{68}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{15}{17}\right)\)
\(\chi_{7803}(1432,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{35}{68}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{11}{17}\right)\)
\(\chi_{7803}(1594,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{12}{17}\right)\)
\(\chi_{7803}(1891,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{57}{68}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{14}{17}\right)\)
\(\chi_{7803}(2053,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{35}{68}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{9}{17}\right)\)
\(\chi_{7803}(2512,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{61}{68}\right)\) \(e\left(\frac{6}{17}\right)\)
\(\chi_{7803}(2809,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{57}{68}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{3}{17}\right)\)
\(\chi_{7803}(2971,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{3}{17}\right)\)
\(\chi_{7803}(3268,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{6}{17}\right)\)
\(\chi_{7803}(3727,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{34}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{57}{68}\right)\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{1}{68}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{9}{17}\right)\)
\(\chi_{7803}(3889,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{9}{68}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{14}{17}\right)\)
\(\chi_{7803}(4186,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{61}{68}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{12}{17}\right)\)
\(\chi_{7803}(4348,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{1}{68}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{11}{17}\right)\)
\(\chi_{7803}(4645,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{61}{68}\right)\) \(e\left(\frac{31}{34}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{15}{17}\right)\)
\(\chi_{7803}(4807,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{34}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{61}{68}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{35}{68}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{8}{17}\right)\)
\(\chi_{7803}(5104,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{34}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{31}{68}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{27}{34}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{1}{17}\right)\)
\(\chi_{7803}(5266,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{33}{34}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{65}{68}\right)\) \(e\left(\frac{5}{17}\right)\)
\(\chi_{7803}(5563,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{65}{68}\right)\) \(e\left(\frac{23}{34}\right)\) \(e\left(\frac{9}{68}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{35}{68}\right)\) \(e\left(\frac{4}{17}\right)\)
\(\chi_{7803}(5725,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{34}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{3}{34}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{9}{68}\right)\) \(e\left(\frac{2}{17}\right)\)
\(\chi_{7803}(6022,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{34}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{19}{34}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{65}{68}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{7}{17}\right)\)
\(\chi_{7803}(6184,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{16}{17}\right)\)
\(\chi_{7803}(6481,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{1}{68}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{65}{68}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{10}{17}\right)\)
\(\chi_{7803}(6643,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{13}{17}\right)\)
\(\chi_{7803}(6940,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{11}{34}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{9}{68}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{13}{17}\right)\)
\(\chi_{7803}(7102,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{34}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{35}{68}\right)\) \(e\left(\frac{15}{34}\right)\) \(e\left(\frac{31}{68}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{10}{17}\right)\)
\(\chi_{7803}(7399,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{34}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{7}{34}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{16}{17}\right)\)