Properties

Label 7803.5725
Modulus $7803$
Conductor $289$
Order $68$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(68)) M = H._module chi = DirichletCharacter(H, M([0,29]))
 
Copy content pari:[g,chi] = znchar(Mod(5725,7803))
 

Basic properties

Modulus: \(7803\)
Conductor: \(289\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(68\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{289}(234,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7803.bg

\(\chi_{7803}(55,\cdot)\) \(\chi_{7803}(217,\cdot)\) \(\chi_{7803}(514,\cdot)\) \(\chi_{7803}(676,\cdot)\) \(\chi_{7803}(973,\cdot)\) \(\chi_{7803}(1135,\cdot)\) \(\chi_{7803}(1432,\cdot)\) \(\chi_{7803}(1594,\cdot)\) \(\chi_{7803}(1891,\cdot)\) \(\chi_{7803}(2053,\cdot)\) \(\chi_{7803}(2512,\cdot)\) \(\chi_{7803}(2809,\cdot)\) \(\chi_{7803}(2971,\cdot)\) \(\chi_{7803}(3268,\cdot)\) \(\chi_{7803}(3727,\cdot)\) \(\chi_{7803}(3889,\cdot)\) \(\chi_{7803}(4186,\cdot)\) \(\chi_{7803}(4348,\cdot)\) \(\chi_{7803}(4645,\cdot)\) \(\chi_{7803}(4807,\cdot)\) \(\chi_{7803}(5104,\cdot)\) \(\chi_{7803}(5266,\cdot)\) \(\chi_{7803}(5563,\cdot)\) \(\chi_{7803}(5725,\cdot)\) \(\chi_{7803}(6022,\cdot)\) \(\chi_{7803}(6184,\cdot)\) \(\chi_{7803}(6481,\cdot)\) \(\chi_{7803}(6643,\cdot)\) \(\chi_{7803}(6940,\cdot)\) \(\chi_{7803}(7102,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{68})$
Fixed field: Number field defined by a degree 68 polynomial

Values on generators

\((2891,2026)\) → \((1,e\left(\frac{29}{68}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 7803 }(5725, a) \) \(1\)\(1\)\(e\left(\frac{1}{34}\right)\)\(e\left(\frac{1}{17}\right)\)\(e\left(\frac{45}{68}\right)\)\(e\left(\frac{7}{68}\right)\)\(e\left(\frac{3}{34}\right)\)\(e\left(\frac{47}{68}\right)\)\(e\left(\frac{55}{68}\right)\)\(e\left(\frac{10}{17}\right)\)\(e\left(\frac{9}{68}\right)\)\(e\left(\frac{2}{17}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7803 }(5725,a) \;\) at \(\;a = \) e.g. 2