Properties

Label 7803.bb
Modulus $7803$
Conductor $459$
Order $36$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(36)) M = H._module chi = DirichletCharacter(H, M([28,27])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(616,7803)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7803\)
Conductor: \(459\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(36\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 459.x
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{7803}(616,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{7803}(1483,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{7803}(1696,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{7803}(2563,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{7803}(3217,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{7803}(4084,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{7803}(4297,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{7803}(5164,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{7803}(5818,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{7803}(6685,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{7803}(6898,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{7803}(7765,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{8}{9}\right)\)