sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(777, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,30,19]))
pari:[g,chi] = znchar(Mod(257,777))
Modulus: | \(777\) | |
Conductor: | \(777\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{777}(89,\cdot)\)
\(\chi_{777}(131,\cdot)\)
\(\chi_{777}(143,\cdot)\)
\(\chi_{777}(227,\cdot)\)
\(\chi_{777}(257,\cdot)\)
\(\chi_{777}(446,\cdot)\)
\(\chi_{777}(500,\cdot)\)
\(\chi_{777}(542,\cdot)\)
\(\chi_{777}(572,\cdot)\)
\(\chi_{777}(605,\cdot)\)
\(\chi_{777}(614,\cdot)\)
\(\chi_{777}(647,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((260,556,631)\) → \((-1,e\left(\frac{5}{6}\right),e\left(\frac{19}{36}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 777 }(257, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{25}{36}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{23}{36}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)