L(s) = 1 | + (−0.342 − 0.939i)2-s + (−0.766 + 0.642i)4-s + (0.342 − 0.939i)5-s + (0.866 + 0.5i)8-s − 10-s + (−0.5 − 0.866i)11-s + (−0.342 + 0.939i)13-s + (0.173 − 0.984i)16-s + (0.984 + 0.173i)17-s + (−0.642 − 0.766i)19-s + (0.342 + 0.939i)20-s + (−0.642 + 0.766i)22-s + (0.866 + 0.5i)23-s + (−0.766 − 0.642i)25-s + 26-s + ⋯ |
L(s) = 1 | + (−0.342 − 0.939i)2-s + (−0.766 + 0.642i)4-s + (0.342 − 0.939i)5-s + (0.866 + 0.5i)8-s − 10-s + (−0.5 − 0.866i)11-s + (−0.342 + 0.939i)13-s + (0.173 − 0.984i)16-s + (0.984 + 0.173i)17-s + (−0.642 − 0.766i)19-s + (0.342 + 0.939i)20-s + (−0.642 + 0.766i)22-s + (0.866 + 0.5i)23-s + (−0.766 − 0.642i)25-s + 26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 777 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1112642980 + 0.07401867928i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1112642980 + 0.07401867928i\) |
\(L(1)\) |
\(\approx\) |
\(0.6204603524 - 0.3999529379i\) |
\(L(1)\) |
\(\approx\) |
\(0.6204603524 - 0.3999529379i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
| 37 | \( 1 \) |
good | 2 | \( 1 + (-0.342 - 0.939i)T \) |
| 5 | \( 1 + (0.342 - 0.939i)T \) |
| 11 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (-0.342 + 0.939i)T \) |
| 17 | \( 1 + (0.984 + 0.173i)T \) |
| 19 | \( 1 + (-0.642 - 0.766i)T \) |
| 23 | \( 1 + (0.866 + 0.5i)T \) |
| 29 | \( 1 + (-0.866 - 0.5i)T \) |
| 31 | \( 1 + (-0.866 - 0.5i)T \) |
| 41 | \( 1 + (0.939 + 0.342i)T \) |
| 43 | \( 1 + iT \) |
| 47 | \( 1 + (-0.5 + 0.866i)T \) |
| 53 | \( 1 + (0.939 - 0.342i)T \) |
| 59 | \( 1 + (-0.342 - 0.939i)T \) |
| 61 | \( 1 + (-0.984 + 0.173i)T \) |
| 67 | \( 1 + (-0.173 - 0.984i)T \) |
| 71 | \( 1 + (-0.173 - 0.984i)T \) |
| 73 | \( 1 + (-0.5 + 0.866i)T \) |
| 79 | \( 1 + (0.342 - 0.939i)T \) |
| 83 | \( 1 + (-0.939 + 0.342i)T \) |
| 89 | \( 1 + (-0.984 - 0.173i)T \) |
| 97 | \( 1 + (-0.866 + 0.5i)T \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−22.323211076065590360113980372726, −21.30504529538838751881444288217, −20.32696974914637017398063599828, −19.28409363686704871891689376390, −18.488890836029801405442020371490, −18.028914757424922312113299974758, −17.14182981191991294367990298811, −16.44219484703128663476795027681, −15.22947874110109484837299686111, −14.88997905560885919886806370224, −14.17076624896176352042692639877, −13.09778311466387447652103752677, −12.37419873441471179901138202771, −10.78068443339831843351776200073, −10.30976710952389306001321788891, −9.550481968461477012961374526894, −8.45150229392598525811563354703, −7.38907944767042017881545821049, −7.09012643008568822103381449568, −5.7899147747191943210416959987, −5.30162513391081312580839636552, −3.99177245774709108773340801403, −2.80970348978778074339098717332, −1.57302985203758594077124115561, −0.03751167214973469666510588463,
1.03275527812074854583921012358, 1.997846390336220168858997055744, 3.068987103314944877571144135781, 4.17821356687332671751594401906, 5.0197936480286387423464458325, 5.95603281260074776212776376243, 7.46874948001150348152685962660, 8.2878095557794290935792557041, 9.22069309771269092984778289277, 9.61862087562898789285906470224, 10.869378292533202257585843586322, 11.461950464948338260814767525324, 12.48449827497702335498059488212, 13.12008086372336776576129017529, 13.78921211037478993789570630036, 14.819700954908131607082289881787, 16.24038043999025152147579077573, 16.75571873188310316307020774148, 17.43959725779706168683682598330, 18.46902250721836531959920564578, 19.20751202531750810203292206563, 19.79448024208657720898107669851, 20.9539077106063300451339303001, 21.229691626507115400930406600310, 21.88616522113867991325827234662