Properties

Label 7742.cn
Modulus $7742$
Conductor $3871$
Order $273$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7742, base_ring=CyclotomicField(546)) M = H._module chi = DirichletCharacter(H, M([260,126])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(65,7742)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7742\)
Conductor: \(3871\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(273\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 3871.cn
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{273})$
Fixed field: Number field defined by a degree 273 polynomial (not computed)

First 31 of 144 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(23\) \(25\)
\(\chi_{7742}(65,\cdot)\) \(1\) \(1\) \(e\left(\frac{193}{273}\right)\) \(e\left(\frac{32}{273}\right)\) \(e\left(\frac{113}{273}\right)\) \(e\left(\frac{202}{273}\right)\) \(e\left(\frac{51}{91}\right)\) \(e\left(\frac{75}{91}\right)\) \(e\left(\frac{205}{273}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{64}{273}\right)\)
\(\chi_{7742}(179,\cdot)\) \(1\) \(1\) \(e\left(\frac{215}{273}\right)\) \(e\left(\frac{187}{273}\right)\) \(e\left(\frac{157}{273}\right)\) \(e\left(\frac{242}{273}\right)\) \(e\left(\frac{62}{91}\right)\) \(e\left(\frac{43}{91}\right)\) \(e\left(\frac{251}{273}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{101}{273}\right)\)
\(\chi_{7742}(247,\cdot)\) \(1\) \(1\) \(e\left(\frac{127}{273}\right)\) \(e\left(\frac{113}{273}\right)\) \(e\left(\frac{254}{273}\right)\) \(e\left(\frac{82}{273}\right)\) \(e\left(\frac{18}{91}\right)\) \(e\left(\frac{80}{91}\right)\) \(e\left(\frac{67}{273}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{226}{273}\right)\)
\(\chi_{7742}(289,\cdot)\) \(1\) \(1\) \(e\left(\frac{199}{273}\right)\) \(e\left(\frac{248}{273}\right)\) \(e\left(\frac{125}{273}\right)\) \(e\left(\frac{64}{273}\right)\) \(e\left(\frac{54}{91}\right)\) \(e\left(\frac{58}{91}\right)\) \(e\left(\frac{19}{273}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{223}{273}\right)\)
\(\chi_{7742}(403,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{273}\right)\) \(e\left(\frac{43}{273}\right)\) \(e\left(\frac{58}{273}\right)\) \(e\left(\frac{152}{273}\right)\) \(e\left(\frac{60}{91}\right)\) \(e\left(\frac{24}{91}\right)\) \(e\left(\frac{11}{273}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{86}{273}\right)\)
\(\chi_{7742}(417,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{273}\right)\) \(e\left(\frac{76}{273}\right)\) \(e\left(\frac{166}{273}\right)\) \(e\left(\frac{2}{273}\right)\) \(e\left(\frac{87}{91}\right)\) \(e\left(\frac{53}{91}\right)\) \(e\left(\frac{248}{273}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{152}{273}\right)\)
\(\chi_{7742}(457,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{273}\right)\) \(e\left(\frac{137}{273}\right)\) \(e\left(\frac{134}{273}\right)\) \(e\left(\frac{97}{273}\right)\) \(e\left(\frac{79}{91}\right)\) \(e\left(\frac{68}{91}\right)\) \(e\left(\frac{16}{273}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{1}{273}\right)\)
\(\chi_{7742}(541,\cdot)\) \(1\) \(1\) \(e\left(\frac{64}{273}\right)\) \(e\left(\frac{29}{273}\right)\) \(e\left(\frac{128}{273}\right)\) \(e\left(\frac{166}{273}\right)\) \(e\left(\frac{32}{91}\right)\) \(e\left(\frac{31}{91}\right)\) \(e\left(\frac{109}{273}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{58}{273}\right)\)
\(\chi_{7742}(571,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{273}\right)\) \(e\left(\frac{145}{273}\right)\) \(e\left(\frac{94}{273}\right)\) \(e\left(\frac{11}{273}\right)\) \(e\left(\frac{69}{91}\right)\) \(e\left(\frac{64}{91}\right)\) \(e\left(\frac{272}{273}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{17}{273}\right)\)
\(\chi_{7742}(599,\cdot)\) \(1\) \(1\) \(e\left(\frac{92}{273}\right)\) \(e\left(\frac{127}{273}\right)\) \(e\left(\frac{184}{273}\right)\) \(e\left(\frac{68}{273}\right)\) \(e\left(\frac{46}{91}\right)\) \(e\left(\frac{73}{91}\right)\) \(e\left(\frac{242}{273}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{254}{273}\right)\)
\(\chi_{7742}(653,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{273}\right)\) \(e\left(\frac{200}{273}\right)\) \(e\left(\frac{92}{273}\right)\) \(e\left(\frac{34}{273}\right)\) \(e\left(\frac{23}{91}\right)\) \(e\left(\frac{82}{91}\right)\) \(e\left(\frac{121}{273}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{127}{273}\right)\)
\(\chi_{7742}(697,\cdot)\) \(1\) \(1\) \(e\left(\frac{50}{273}\right)\) \(e\left(\frac{253}{273}\right)\) \(e\left(\frac{100}{273}\right)\) \(e\left(\frac{215}{273}\right)\) \(e\left(\frac{25}{91}\right)\) \(e\left(\frac{10}{91}\right)\) \(e\left(\frac{179}{273}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{233}{273}\right)\)
\(\chi_{7742}(877,\cdot)\) \(1\) \(1\) \(e\left(\frac{94}{273}\right)\) \(e\left(\frac{17}{273}\right)\) \(e\left(\frac{188}{273}\right)\) \(e\left(\frac{22}{273}\right)\) \(e\left(\frac{47}{91}\right)\) \(e\left(\frac{37}{91}\right)\) \(e\left(\frac{271}{273}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{34}{273}\right)\)
\(\chi_{7742}(879,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{273}\right)\) \(e\left(\frac{178}{273}\right)\) \(e\left(\frac{202}{273}\right)\) \(e\left(\frac{134}{273}\right)\) \(e\left(\frac{5}{91}\right)\) \(e\left(\frac{2}{91}\right)\) \(e\left(\frac{236}{273}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{83}{273}\right)\)
\(\chi_{7742}(891,\cdot)\) \(1\) \(1\) \(e\left(\frac{265}{273}\right)\) \(e\left(\frac{167}{273}\right)\) \(e\left(\frac{257}{273}\right)\) \(e\left(\frac{184}{273}\right)\) \(e\left(\frac{87}{91}\right)\) \(e\left(\frac{53}{91}\right)\) \(e\left(\frac{157}{273}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{61}{273}\right)\)
\(\chi_{7742}(907,\cdot)\) \(1\) \(1\) \(e\left(\frac{230}{273}\right)\) \(e\left(\frac{181}{273}\right)\) \(e\left(\frac{187}{273}\right)\) \(e\left(\frac{170}{273}\right)\) \(e\left(\frac{24}{91}\right)\) \(e\left(\frac{46}{91}\right)\) \(e\left(\frac{59}{273}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{89}{273}\right)\)
\(\chi_{7742}(921,\cdot)\) \(1\) \(1\) \(e\left(\frac{95}{273}\right)\) \(e\left(\frac{235}{273}\right)\) \(e\left(\frac{190}{273}\right)\) \(e\left(\frac{272}{273}\right)\) \(e\left(\frac{2}{91}\right)\) \(e\left(\frac{19}{91}\right)\) \(e\left(\frac{149}{273}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{197}{273}\right)\)
\(\chi_{7742}(933,\cdot)\) \(1\) \(1\) \(e\left(\frac{253}{273}\right)\) \(e\left(\frac{8}{273}\right)\) \(e\left(\frac{233}{273}\right)\) \(e\left(\frac{187}{273}\right)\) \(e\left(\frac{81}{91}\right)\) \(e\left(\frac{87}{91}\right)\) \(e\left(\frac{256}{273}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{16}{273}\right)\)
\(\chi_{7742}(1045,\cdot)\) \(1\) \(1\) \(e\left(\frac{151}{273}\right)\) \(e\left(\frac{158}{273}\right)\) \(e\left(\frac{29}{273}\right)\) \(e\left(\frac{76}{273}\right)\) \(e\left(\frac{30}{91}\right)\) \(e\left(\frac{12}{91}\right)\) \(e\left(\frac{142}{273}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{43}{273}\right)\)
\(\chi_{7742}(1073,\cdot)\) \(1\) \(1\) \(e\left(\frac{157}{273}\right)\) \(e\left(\frac{101}{273}\right)\) \(e\left(\frac{41}{273}\right)\) \(e\left(\frac{211}{273}\right)\) \(e\left(\frac{33}{91}\right)\) \(e\left(\frac{86}{91}\right)\) \(e\left(\frac{229}{273}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{202}{273}\right)\)
\(\chi_{7742}(1089,\cdot)\) \(1\) \(1\) \(e\left(\frac{197}{273}\right)\) \(e\left(\frac{85}{273}\right)\) \(e\left(\frac{121}{273}\right)\) \(e\left(\frac{110}{273}\right)\) \(e\left(\frac{53}{91}\right)\) \(e\left(\frac{3}{91}\right)\) \(e\left(\frac{263}{273}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{170}{273}\right)\)
\(\chi_{7742}(1171,\cdot)\) \(1\) \(1\) \(e\left(\frac{115}{273}\right)\) \(e\left(\frac{227}{273}\right)\) \(e\left(\frac{230}{273}\right)\) \(e\left(\frac{85}{273}\right)\) \(e\left(\frac{12}{91}\right)\) \(e\left(\frac{23}{91}\right)\) \(e\left(\frac{166}{273}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{181}{273}\right)\)
\(\chi_{7742}(1173,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{273}\right)\) \(e\left(\frac{94}{273}\right)\) \(e\left(\frac{76}{273}\right)\) \(e\left(\frac{218}{273}\right)\) \(e\left(\frac{19}{91}\right)\) \(e\left(\frac{44}{91}\right)\) \(e\left(\frac{5}{273}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{188}{273}\right)\)
\(\chi_{7742}(1285,\cdot)\) \(1\) \(1\) \(e\left(\frac{176}{273}\right)\) \(e\left(\frac{148}{273}\right)\) \(e\left(\frac{79}{273}\right)\) \(e\left(\frac{47}{273}\right)\) \(e\left(\frac{88}{91}\right)\) \(e\left(\frac{17}{91}\right)\) \(e\left(\frac{95}{273}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{23}{273}\right)\)
\(\chi_{7742}(1381,\cdot)\) \(1\) \(1\) \(e\left(\frac{139}{273}\right)\) \(e\left(\frac{272}{273}\right)\) \(e\left(\frac{5}{273}\right)\) \(e\left(\frac{79}{273}\right)\) \(e\left(\frac{24}{91}\right)\) \(e\left(\frac{46}{91}\right)\) \(e\left(\frac{241}{273}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{271}{273}\right)\)
\(\chi_{7742}(1395,\cdot)\) \(1\) \(1\) \(e\left(\frac{121}{273}\right)\) \(e\left(\frac{170}{273}\right)\) \(e\left(\frac{242}{273}\right)\) \(e\left(\frac{220}{273}\right)\) \(e\left(\frac{15}{91}\right)\) \(e\left(\frac{6}{91}\right)\) \(e\left(\frac{253}{273}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{67}{273}\right)\)
\(\chi_{7742}(1509,\cdot)\) \(1\) \(1\) \(e\left(\frac{263}{273}\right)\) \(e\left(\frac{4}{273}\right)\) \(e\left(\frac{253}{273}\right)\) \(e\left(\frac{230}{273}\right)\) \(e\left(\frac{86}{91}\right)\) \(e\left(\frac{89}{91}\right)\) \(e\left(\frac{128}{273}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{8}{273}\right)\)
\(\chi_{7742}(1523,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{273}\right)\) \(e\left(\frac{37}{273}\right)\) \(e\left(\frac{88}{273}\right)\) \(e\left(\frac{80}{273}\right)\) \(e\left(\frac{22}{91}\right)\) \(e\left(\frac{27}{91}\right)\) \(e\left(\frac{92}{273}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{74}{273}\right)\)
\(\chi_{7742}(1563,\cdot)\) \(1\) \(1\) \(e\left(\frac{262}{273}\right)\) \(e\left(\frac{59}{273}\right)\) \(e\left(\frac{251}{273}\right)\) \(e\left(\frac{253}{273}\right)\) \(e\left(\frac{40}{91}\right)\) \(e\left(\frac{16}{91}\right)\) \(e\left(\frac{250}{273}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{118}{273}\right)\)
\(\chi_{7742}(1565,\cdot)\) \(1\) \(1\) \(e\left(\frac{227}{273}\right)\) \(e\left(\frac{73}{273}\right)\) \(e\left(\frac{181}{273}\right)\) \(e\left(\frac{239}{273}\right)\) \(e\left(\frac{68}{91}\right)\) \(e\left(\frac{9}{91}\right)\) \(e\left(\frac{152}{273}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{146}{273}\right)\)
\(\chi_{7742}(1677,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{273}\right)\) \(e\left(\frac{106}{273}\right)\) \(e\left(\frac{16}{273}\right)\) \(e\left(\frac{89}{273}\right)\) \(e\left(\frac{4}{91}\right)\) \(e\left(\frac{38}{91}\right)\) \(e\left(\frac{116}{273}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{212}{273}\right)\)