Properties

Label 7742.247
Modulus $7742$
Conductor $3871$
Order $273$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7742, base_ring=CyclotomicField(546)) M = H._module chi = DirichletCharacter(H, M([338,462]))
 
Copy content pari:[g,chi] = znchar(Mod(247,7742))
 

Basic properties

Modulus: \(7742\)
Conductor: \(3871\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(273\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3871}(247,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7742.cn

\(\chi_{7742}(65,\cdot)\) \(\chi_{7742}(179,\cdot)\) \(\chi_{7742}(247,\cdot)\) \(\chi_{7742}(289,\cdot)\) \(\chi_{7742}(403,\cdot)\) \(\chi_{7742}(417,\cdot)\) \(\chi_{7742}(457,\cdot)\) \(\chi_{7742}(541,\cdot)\) \(\chi_{7742}(571,\cdot)\) \(\chi_{7742}(599,\cdot)\) \(\chi_{7742}(653,\cdot)\) \(\chi_{7742}(697,\cdot)\) \(\chi_{7742}(877,\cdot)\) \(\chi_{7742}(879,\cdot)\) \(\chi_{7742}(891,\cdot)\) \(\chi_{7742}(907,\cdot)\) \(\chi_{7742}(921,\cdot)\) \(\chi_{7742}(933,\cdot)\) \(\chi_{7742}(1045,\cdot)\) \(\chi_{7742}(1073,\cdot)\) \(\chi_{7742}(1089,\cdot)\) \(\chi_{7742}(1171,\cdot)\) \(\chi_{7742}(1173,\cdot)\) \(\chi_{7742}(1285,\cdot)\) \(\chi_{7742}(1381,\cdot)\) \(\chi_{7742}(1395,\cdot)\) \(\chi_{7742}(1509,\cdot)\) \(\chi_{7742}(1523,\cdot)\) \(\chi_{7742}(1563,\cdot)\) \(\chi_{7742}(1565,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{273})$
Fixed field: Number field defined by a degree 273 polynomial (not computed)

Values on generators

\((2845,4901)\) → \((e\left(\frac{13}{21}\right),e\left(\frac{11}{13}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)
\( \chi_{ 7742 }(247, a) \) \(1\)\(1\)\(e\left(\frac{127}{273}\right)\)\(e\left(\frac{113}{273}\right)\)\(e\left(\frac{254}{273}\right)\)\(e\left(\frac{82}{273}\right)\)\(e\left(\frac{18}{91}\right)\)\(e\left(\frac{80}{91}\right)\)\(e\left(\frac{67}{273}\right)\)\(e\left(\frac{29}{39}\right)\)\(e\left(\frac{11}{21}\right)\)\(e\left(\frac{226}{273}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7742 }(247,a) \;\) at \(\;a = \) e.g. 2