Properties

Label 7728.5731
Modulus $7728$
Conductor $2576$
Order $132$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7728, base_ring=CyclotomicField(132)) M = H._module chi = DirichletCharacter(H, M([66,99,0,110,24]))
 
Copy content pari:[g,chi] = znchar(Mod(5731,7728))
 

Basic properties

Modulus: \(7728\)
Conductor: \(2576\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(132\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2576}(579,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7728.gy

\(\chi_{7728}(187,\cdot)\) \(\chi_{7728}(859,\cdot)\) \(\chi_{7728}(955,\cdot)\) \(\chi_{7728}(1291,\cdot)\) \(\chi_{7728}(1363,\cdot)\) \(\chi_{7728}(1531,\cdot)\) \(\chi_{7728}(1867,\cdot)\) \(\chi_{7728}(1963,\cdot)\) \(\chi_{7728}(2203,\cdot)\) \(\chi_{7728}(2371,\cdot)\) \(\chi_{7728}(2467,\cdot)\) \(\chi_{7728}(2539,\cdot)\) \(\chi_{7728}(2635,\cdot)\) \(\chi_{7728}(2707,\cdot)\) \(\chi_{7728}(2971,\cdot)\) \(\chi_{7728}(3307,\cdot)\) \(\chi_{7728}(3475,\cdot)\) \(\chi_{7728}(3643,\cdot)\) \(\chi_{7728}(3715,\cdot)\) \(\chi_{7728}(3811,\cdot)\) \(\chi_{7728}(4051,\cdot)\) \(\chi_{7728}(4723,\cdot)\) \(\chi_{7728}(4819,\cdot)\) \(\chi_{7728}(5155,\cdot)\) \(\chi_{7728}(5227,\cdot)\) \(\chi_{7728}(5395,\cdot)\) \(\chi_{7728}(5731,\cdot)\) \(\chi_{7728}(5827,\cdot)\) \(\chi_{7728}(6067,\cdot)\) \(\chi_{7728}(6235,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{132})$
Fixed field: Number field defined by a degree 132 polynomial (not computed)

Values on generators

\((4831,5797,5153,6625,6721)\) → \((-1,-i,1,e\left(\frac{5}{6}\right),e\left(\frac{2}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 7728 }(5731, a) \) \(1\)\(1\)\(e\left(\frac{13}{132}\right)\)\(e\left(\frac{29}{132}\right)\)\(e\left(\frac{13}{44}\right)\)\(e\left(\frac{7}{66}\right)\)\(e\left(\frac{85}{132}\right)\)\(e\left(\frac{13}{66}\right)\)\(e\left(\frac{23}{44}\right)\)\(e\left(\frac{14}{33}\right)\)\(e\left(\frac{31}{132}\right)\)\(e\left(\frac{2}{11}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7728 }(5731,a) \;\) at \(\;a = \) e.g. 2