Properties

Label 2576.579
Modulus $2576$
Conductor $2576$
Order $132$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2576, base_ring=CyclotomicField(132)) M = H._module chi = DirichletCharacter(H, M([66,99,110,24]))
 
Copy content pari:[g,chi] = znchar(Mod(579,2576))
 

Basic properties

Modulus: \(2576\)
Conductor: \(2576\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(132\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2576.dp

\(\chi_{2576}(3,\cdot)\) \(\chi_{2576}(59,\cdot)\) \(\chi_{2576}(75,\cdot)\) \(\chi_{2576}(131,\cdot)\) \(\chi_{2576}(187,\cdot)\) \(\chi_{2576}(243,\cdot)\) \(\chi_{2576}(395,\cdot)\) \(\chi_{2576}(579,\cdot)\) \(\chi_{2576}(675,\cdot)\) \(\chi_{2576}(731,\cdot)\) \(\chi_{2576}(859,\cdot)\) \(\chi_{2576}(899,\cdot)\) \(\chi_{2576}(915,\cdot)\) \(\chi_{2576}(955,\cdot)\) \(\chi_{2576}(1067,\cdot)\) \(\chi_{2576}(1083,\cdot)\) \(\chi_{2576}(1139,\cdot)\) \(\chi_{2576}(1179,\cdot)\) \(\chi_{2576}(1235,\cdot)\) \(\chi_{2576}(1251,\cdot)\) \(\chi_{2576}(1291,\cdot)\) \(\chi_{2576}(1347,\cdot)\) \(\chi_{2576}(1363,\cdot)\) \(\chi_{2576}(1419,\cdot)\) \(\chi_{2576}(1475,\cdot)\) \(\chi_{2576}(1531,\cdot)\) \(\chi_{2576}(1683,\cdot)\) \(\chi_{2576}(1867,\cdot)\) \(\chi_{2576}(1963,\cdot)\) \(\chi_{2576}(2019,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{132})$
Fixed field: Number field defined by a degree 132 polynomial (not computed)

Values on generators

\((2255,645,1473,1569)\) → \((-1,-i,e\left(\frac{5}{6}\right),e\left(\frac{2}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(25\)\(27\)
\( \chi_{ 2576 }(579, a) \) \(1\)\(1\)\(e\left(\frac{65}{132}\right)\)\(e\left(\frac{13}{132}\right)\)\(e\left(\frac{65}{66}\right)\)\(e\left(\frac{29}{132}\right)\)\(e\left(\frac{13}{44}\right)\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{7}{66}\right)\)\(e\left(\frac{85}{132}\right)\)\(e\left(\frac{13}{66}\right)\)\(e\left(\frac{21}{44}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2576 }(579,a) \;\) at \(\;a = \) e.g. 2