sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2576, base_ring=CyclotomicField(132))
M = H._module
chi = DirichletCharacter(H, M([66,99,110,24]))
pari:[g,chi] = znchar(Mod(579,2576))
| Modulus: | \(2576\) | |
| Conductor: | \(2576\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(132\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2576}(3,\cdot)\)
\(\chi_{2576}(59,\cdot)\)
\(\chi_{2576}(75,\cdot)\)
\(\chi_{2576}(131,\cdot)\)
\(\chi_{2576}(187,\cdot)\)
\(\chi_{2576}(243,\cdot)\)
\(\chi_{2576}(395,\cdot)\)
\(\chi_{2576}(579,\cdot)\)
\(\chi_{2576}(675,\cdot)\)
\(\chi_{2576}(731,\cdot)\)
\(\chi_{2576}(859,\cdot)\)
\(\chi_{2576}(899,\cdot)\)
\(\chi_{2576}(915,\cdot)\)
\(\chi_{2576}(955,\cdot)\)
\(\chi_{2576}(1067,\cdot)\)
\(\chi_{2576}(1083,\cdot)\)
\(\chi_{2576}(1139,\cdot)\)
\(\chi_{2576}(1179,\cdot)\)
\(\chi_{2576}(1235,\cdot)\)
\(\chi_{2576}(1251,\cdot)\)
\(\chi_{2576}(1291,\cdot)\)
\(\chi_{2576}(1347,\cdot)\)
\(\chi_{2576}(1363,\cdot)\)
\(\chi_{2576}(1419,\cdot)\)
\(\chi_{2576}(1475,\cdot)\)
\(\chi_{2576}(1531,\cdot)\)
\(\chi_{2576}(1683,\cdot)\)
\(\chi_{2576}(1867,\cdot)\)
\(\chi_{2576}(1963,\cdot)\)
\(\chi_{2576}(2019,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2255,645,1473,1569)\) → \((-1,-i,e\left(\frac{5}{6}\right),e\left(\frac{2}{11}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(25\) | \(27\) |
| \( \chi_{ 2576 }(579, a) \) |
\(1\) | \(1\) | \(e\left(\frac{65}{132}\right)\) | \(e\left(\frac{13}{132}\right)\) | \(e\left(\frac{65}{66}\right)\) | \(e\left(\frac{29}{132}\right)\) | \(e\left(\frac{13}{44}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{7}{66}\right)\) | \(e\left(\frac{85}{132}\right)\) | \(e\left(\frac{13}{66}\right)\) | \(e\left(\frac{21}{44}\right)\) |
sage:chi.jacobi_sum(n)