Properties

Label 765.cs
Modulus $765$
Conductor $765$
Order $48$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(765, base_ring=CyclotomicField(48)) M = H._module chi = DirichletCharacter(H, M([32,12,33])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(7,765)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(765\)
Conductor: \(765\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(48\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(19\) \(22\)
\(\chi_{765}(7,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{48}\right)\)
\(\chi_{765}(88,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{19}{48}\right)\)
\(\chi_{765}(112,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{41}{48}\right)\)
\(\chi_{765}(133,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{43}{48}\right)\)
\(\chi_{765}(142,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{13}{48}\right)\)
\(\chi_{765}(148,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{23}{48}\right)\)
\(\chi_{765}(232,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{37}{48}\right)\)
\(\chi_{765}(328,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{47}{48}\right)\)
\(\chi_{765}(367,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{25}{48}\right)\)
\(\chi_{765}(403,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{48}\right)\)
\(\chi_{765}(517,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{17}{48}\right)\)
\(\chi_{765}(583,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{31}{48}\right)\)
\(\chi_{765}(598,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{35}{48}\right)\)
\(\chi_{765}(643,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{11}{48}\right)\)
\(\chi_{765}(652,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{29}{48}\right)\)
\(\chi_{765}(742,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{48}\right)\)