Properties

Label 763.466
Modulus $763$
Conductor $763$
Order $108$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(763, base_ring=CyclotomicField(108)) M = H._module chi = DirichletCharacter(H, M([72,77]))
 
Copy content pari:[g,chi] = znchar(Mod(466,763))
 

Basic properties

Modulus: \(763\)
Conductor: \(763\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(108\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 763.cn

\(\chi_{763}(11,\cdot)\) \(\chi_{763}(18,\cdot)\) \(\chi_{763}(39,\cdot)\) \(\chi_{763}(51,\cdot)\) \(\chi_{763}(58,\cdot)\) \(\chi_{763}(67,\cdot)\) \(\chi_{763}(149,\cdot)\) \(\chi_{763}(151,\cdot)\) \(\chi_{763}(179,\cdot)\) \(\chi_{763}(200,\cdot)\) \(\chi_{763}(205,\cdot)\) \(\chi_{763}(207,\cdot)\) \(\chi_{763}(212,\cdot)\) \(\chi_{763}(275,\cdot)\) \(\chi_{763}(277,\cdot)\) \(\chi_{763}(303,\cdot)\) \(\chi_{763}(317,\cdot)\) \(\chi_{763}(380,\cdot)\) \(\chi_{763}(389,\cdot)\) \(\chi_{763}(422,\cdot)\) \(\chi_{763}(450,\cdot)\) \(\chi_{763}(466,\cdot)\) \(\chi_{763}(473,\cdot)\) \(\chi_{763}(480,\cdot)\) \(\chi_{763}(492,\cdot)\) \(\chi_{763}(501,\cdot)\) \(\chi_{763}(508,\cdot)\) \(\chi_{763}(515,\cdot)\) \(\chi_{763}(555,\cdot)\) \(\chi_{763}(569,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((437,442)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{77}{108}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 763 }(466, a) \) \(-1\)\(1\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{20}{27}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{14}{27}\right)\)\(e\left(\frac{77}{108}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{13}{27}\right)\)\(e\left(\frac{53}{108}\right)\)\(e\left(\frac{91}{108}\right)\)\(e\left(\frac{37}{54}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 763 }(466,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 763 }(466,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 763 }(466,·),\chi_{ 763 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 763 }(466,·)) \;\) at \(\; a,b = \) e.g. 1,2