sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(763, base_ring=CyclotomicField(108))
M = H._module
chi = DirichletCharacter(H, M([72,77]))
pari:[g,chi] = znchar(Mod(466,763))
Modulus: | \(763\) | |
Conductor: | \(763\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(108\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{763}(11,\cdot)\)
\(\chi_{763}(18,\cdot)\)
\(\chi_{763}(39,\cdot)\)
\(\chi_{763}(51,\cdot)\)
\(\chi_{763}(58,\cdot)\)
\(\chi_{763}(67,\cdot)\)
\(\chi_{763}(149,\cdot)\)
\(\chi_{763}(151,\cdot)\)
\(\chi_{763}(179,\cdot)\)
\(\chi_{763}(200,\cdot)\)
\(\chi_{763}(205,\cdot)\)
\(\chi_{763}(207,\cdot)\)
\(\chi_{763}(212,\cdot)\)
\(\chi_{763}(275,\cdot)\)
\(\chi_{763}(277,\cdot)\)
\(\chi_{763}(303,\cdot)\)
\(\chi_{763}(317,\cdot)\)
\(\chi_{763}(380,\cdot)\)
\(\chi_{763}(389,\cdot)\)
\(\chi_{763}(422,\cdot)\)
\(\chi_{763}(450,\cdot)\)
\(\chi_{763}(466,\cdot)\)
\(\chi_{763}(473,\cdot)\)
\(\chi_{763}(480,\cdot)\)
\(\chi_{763}(492,\cdot)\)
\(\chi_{763}(501,\cdot)\)
\(\chi_{763}(508,\cdot)\)
\(\chi_{763}(515,\cdot)\)
\(\chi_{763}(555,\cdot)\)
\(\chi_{763}(569,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((437,442)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{77}{108}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
\( \chi_{ 763 }(466, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{20}{27}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{14}{27}\right)\) | \(e\left(\frac{77}{108}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{13}{27}\right)\) | \(e\left(\frac{53}{108}\right)\) | \(e\left(\frac{91}{108}\right)\) | \(e\left(\frac{37}{54}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)