sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(763, base_ring=CyclotomicField(108))
M = H._module
chi = DirichletCharacter(H, M([18,17]))
pari:[g,chi] = znchar(Mod(374,763))
| Modulus: | \(763\) | |
| Conductor: | \(763\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(108\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{763}(40,\cdot)\)
\(\chi_{763}(59,\cdot)\)
\(\chi_{763}(96,\cdot)\)
\(\chi_{763}(103,\cdot)\)
\(\chi_{763}(166,\cdot)\)
\(\chi_{763}(171,\cdot)\)
\(\chi_{763}(194,\cdot)\)
\(\chi_{763}(208,\cdot)\)
\(\chi_{763}(248,\cdot)\)
\(\chi_{763}(255,\cdot)\)
\(\chi_{763}(262,\cdot)\)
\(\chi_{763}(271,\cdot)\)
\(\chi_{763}(283,\cdot)\)
\(\chi_{763}(290,\cdot)\)
\(\chi_{763}(297,\cdot)\)
\(\chi_{763}(313,\cdot)\)
\(\chi_{763}(341,\cdot)\)
\(\chi_{763}(374,\cdot)\)
\(\chi_{763}(383,\cdot)\)
\(\chi_{763}(446,\cdot)\)
\(\chi_{763}(460,\cdot)\)
\(\chi_{763}(486,\cdot)\)
\(\chi_{763}(488,\cdot)\)
\(\chi_{763}(551,\cdot)\)
\(\chi_{763}(556,\cdot)\)
\(\chi_{763}(558,\cdot)\)
\(\chi_{763}(563,\cdot)\)
\(\chi_{763}(584,\cdot)\)
\(\chi_{763}(612,\cdot)\)
\(\chi_{763}(614,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((437,442)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{17}{108}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 763 }(374, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{19}{54}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{43}{54}\right)\) | \(e\left(\frac{71}{108}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{19}{27}\right)\) | \(e\left(\frac{11}{108}\right)\) | \(e\left(\frac{79}{108}\right)\) | \(e\left(\frac{26}{27}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)