Properties

Label 763.208
Modulus $763$
Conductor $763$
Order $108$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(763, base_ring=CyclotomicField(108)) M = H._module chi = DirichletCharacter(H, M([90,79]))
 
Copy content pari:[g,chi] = znchar(Mod(208,763))
 

Basic properties

Modulus: \(763\)
Conductor: \(763\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(108\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 763.ci

\(\chi_{763}(40,\cdot)\) \(\chi_{763}(59,\cdot)\) \(\chi_{763}(96,\cdot)\) \(\chi_{763}(103,\cdot)\) \(\chi_{763}(166,\cdot)\) \(\chi_{763}(171,\cdot)\) \(\chi_{763}(194,\cdot)\) \(\chi_{763}(208,\cdot)\) \(\chi_{763}(248,\cdot)\) \(\chi_{763}(255,\cdot)\) \(\chi_{763}(262,\cdot)\) \(\chi_{763}(271,\cdot)\) \(\chi_{763}(283,\cdot)\) \(\chi_{763}(290,\cdot)\) \(\chi_{763}(297,\cdot)\) \(\chi_{763}(313,\cdot)\) \(\chi_{763}(341,\cdot)\) \(\chi_{763}(374,\cdot)\) \(\chi_{763}(383,\cdot)\) \(\chi_{763}(446,\cdot)\) \(\chi_{763}(460,\cdot)\) \(\chi_{763}(486,\cdot)\) \(\chi_{763}(488,\cdot)\) \(\chi_{763}(551,\cdot)\) \(\chi_{763}(556,\cdot)\) \(\chi_{763}(558,\cdot)\) \(\chi_{763}(563,\cdot)\) \(\chi_{763}(584,\cdot)\) \(\chi_{763}(612,\cdot)\) \(\chi_{763}(614,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((437,442)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{79}{108}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 763 }(208, a) \) \(1\)\(1\)\(e\left(\frac{13}{36}\right)\)\(e\left(\frac{47}{54}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{41}{54}\right)\)\(e\left(\frac{25}{108}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{20}{27}\right)\)\(e\left(\frac{13}{108}\right)\)\(e\left(\frac{5}{108}\right)\)\(e\left(\frac{16}{27}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 763 }(208,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 763 }(208,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 763 }(208,·),\chi_{ 763 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 763 }(208,·)) \;\) at \(\; a,b = \) e.g. 1,2