sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7616, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([24,15,40,33]))
pari:[g,chi] = znchar(Mod(75,7616))
| Modulus: | \(7616\) | |
| Conductor: | \(7616\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(48\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{7616}(75,\cdot)\)
\(\chi_{7616}(131,\cdot)\)
\(\chi_{7616}(283,\cdot)\)
\(\chi_{7616}(299,\cdot)\)
\(\chi_{7616}(635,\cdot)\)
\(\chi_{7616}(915,\cdot)\)
\(\chi_{7616}(1907,\cdot)\)
\(\chi_{7616}(2147,\cdot)\)
\(\chi_{7616}(3547,\cdot)\)
\(\chi_{7616}(4427,\cdot)\)
\(\chi_{7616}(4483,\cdot)\)
\(\chi_{7616}(4651,\cdot)\)
\(\chi_{7616}(4987,\cdot)\)
\(\chi_{7616}(5171,\cdot)\)
\(\chi_{7616}(5267,\cdot)\)
\(\chi_{7616}(6499,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5951,3333,3265,2689)\) → \((-1,e\left(\frac{5}{16}\right),e\left(\frac{5}{6}\right),e\left(\frac{11}{16}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(19\) | \(23\) | \(25\) | \(27\) |
| \( \chi_{ 7616 }(75, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{8}\right)\) |
sage:chi.jacobi_sum(n)