Properties

Label 7581.cx
Modulus $7581$
Conductor $2527$
Order $57$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7581, base_ring=CyclotomicField(114)) M = H._module chi = DirichletCharacter(H, M([0,38,70])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(163,7581)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7581\)
Conductor: \(2527\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(57\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2527.bl
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{57})$
Fixed field: Number field defined by a degree 57 polynomial

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(11\) \(13\) \(16\) \(17\) \(20\)
\(\chi_{7581}(163,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{13}{19}\right)\)
\(\chi_{7581}(235,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{10}{19}\right)\)
\(\chi_{7581}(562,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{3}{19}\right)\)
\(\chi_{7581}(634,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{16}{19}\right)\)
\(\chi_{7581}(961,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{12}{19}\right)\)
\(\chi_{7581}(1033,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{3}{19}\right)\)
\(\chi_{7581}(1360,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{2}{19}\right)\)
\(\chi_{7581}(1432,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{9}{19}\right)\)
\(\chi_{7581}(1759,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{11}{19}\right)\)
\(\chi_{7581}(1831,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{15}{19}\right)\)
\(\chi_{7581}(2158,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{1}{19}\right)\)
\(\chi_{7581}(2230,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{2}{19}\right)\)
\(\chi_{7581}(2557,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{10}{19}\right)\)
\(\chi_{7581}(2629,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{8}{19}\right)\)
\(\chi_{7581}(3028,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{14}{19}\right)\)
\(\chi_{7581}(3355,\cdot)\) \(1\) \(1\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{9}{19}\right)\)
\(\chi_{7581}(3427,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{1}{19}\right)\)
\(\chi_{7581}(3754,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{18}{19}\right)\)
\(\chi_{7581}(3826,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{7}{19}\right)\)
\(\chi_{7581}(4153,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{8}{19}\right)\)
\(\chi_{7581}(4225,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{13}{19}\right)\)
\(\chi_{7581}(4552,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{17}{19}\right)\)
\(\chi_{7581}(4951,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{7}{19}\right)\)
\(\chi_{7581}(5023,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{6}{19}\right)\)
\(\chi_{7581}(5350,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{16}{19}\right)\)
\(\chi_{7581}(5422,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{12}{19}\right)\)
\(\chi_{7581}(5749,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{6}{19}\right)\)
\(\chi_{7581}(5821,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{18}{19}\right)\)
\(\chi_{7581}(6148,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{15}{19}\right)\)
\(\chi_{7581}(6220,\cdot)\) \(1\) \(1\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{5}{19}\right)\)
\(\chi_{7581}(6547,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{5}{19}\right)\)