Properties

Label 7581.3427
Modulus $7581$
Conductor $2527$
Order $57$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7581, base_ring=CyclotomicField(114)) M = H._module chi = DirichletCharacter(H, M([0,76,20]))
 
Copy content pari:[g,chi] = znchar(Mod(3427,7581))
 

Basic properties

Modulus: \(7581\)
Conductor: \(2527\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(57\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2527}(900,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7581.cx

\(\chi_{7581}(163,\cdot)\) \(\chi_{7581}(235,\cdot)\) \(\chi_{7581}(562,\cdot)\) \(\chi_{7581}(634,\cdot)\) \(\chi_{7581}(961,\cdot)\) \(\chi_{7581}(1033,\cdot)\) \(\chi_{7581}(1360,\cdot)\) \(\chi_{7581}(1432,\cdot)\) \(\chi_{7581}(1759,\cdot)\) \(\chi_{7581}(1831,\cdot)\) \(\chi_{7581}(2158,\cdot)\) \(\chi_{7581}(2230,\cdot)\) \(\chi_{7581}(2557,\cdot)\) \(\chi_{7581}(2629,\cdot)\) \(\chi_{7581}(3028,\cdot)\) \(\chi_{7581}(3355,\cdot)\) \(\chi_{7581}(3427,\cdot)\) \(\chi_{7581}(3754,\cdot)\) \(\chi_{7581}(3826,\cdot)\) \(\chi_{7581}(4153,\cdot)\) \(\chi_{7581}(4225,\cdot)\) \(\chi_{7581}(4552,\cdot)\) \(\chi_{7581}(4951,\cdot)\) \(\chi_{7581}(5023,\cdot)\) \(\chi_{7581}(5350,\cdot)\) \(\chi_{7581}(5422,\cdot)\) \(\chi_{7581}(5749,\cdot)\) \(\chi_{7581}(5821,\cdot)\) \(\chi_{7581}(6148,\cdot)\) \(\chi_{7581}(6220,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{57})$
Fixed field: Number field defined by a degree 57 polynomial

Values on generators

\((2528,6499,1807)\) → \((1,e\left(\frac{2}{3}\right),e\left(\frac{10}{57}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(20\)
\( \chi_{ 7581 }(3427, a) \) \(1\)\(1\)\(e\left(\frac{29}{57}\right)\)\(e\left(\frac{1}{57}\right)\)\(e\left(\frac{2}{57}\right)\)\(e\left(\frac{10}{19}\right)\)\(e\left(\frac{31}{57}\right)\)\(e\left(\frac{32}{57}\right)\)\(e\left(\frac{41}{57}\right)\)\(e\left(\frac{2}{57}\right)\)\(e\left(\frac{6}{19}\right)\)\(e\left(\frac{1}{19}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7581 }(3427,a) \;\) at \(\;a = \) e.g. 2