sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7448, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([63,63,18,49]))
pari:[g,chi] = znchar(Mod(5923,7448))
Modulus: | \(7448\) | |
Conductor: | \(7448\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(126\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{7448}(155,\cdot)\)
\(\chi_{7448}(211,\cdot)\)
\(\chi_{7448}(547,\cdot)\)
\(\chi_{7448}(603,\cdot)\)
\(\chi_{7448}(659,\cdot)\)
\(\chi_{7448}(827,\cdot)\)
\(\chi_{7448}(1219,\cdot)\)
\(\chi_{7448}(1611,\cdot)\)
\(\chi_{7448}(1723,\cdot)\)
\(\chi_{7448}(1891,\cdot)\)
\(\chi_{7448}(2283,\cdot)\)
\(\chi_{7448}(2339,\cdot)\)
\(\chi_{7448}(2675,\cdot)\)
\(\chi_{7448}(2731,\cdot)\)
\(\chi_{7448}(2787,\cdot)\)
\(\chi_{7448}(2955,\cdot)\)
\(\chi_{7448}(3347,\cdot)\)
\(\chi_{7448}(3403,\cdot)\)
\(\chi_{7448}(3739,\cdot)\)
\(\chi_{7448}(3795,\cdot)\)
\(\chi_{7448}(3851,\cdot)\)
\(\chi_{7448}(4467,\cdot)\)
\(\chi_{7448}(4859,\cdot)\)
\(\chi_{7448}(4915,\cdot)\)
\(\chi_{7448}(5083,\cdot)\)
\(\chi_{7448}(5475,\cdot)\)
\(\chi_{7448}(5531,\cdot)\)
\(\chi_{7448}(5867,\cdot)\)
\(\chi_{7448}(5923,\cdot)\)
\(\chi_{7448}(6147,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1863,3725,3041,3137)\) → \((-1,-1,e\left(\frac{1}{7}\right),e\left(\frac{7}{18}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 7448 }(5923, a) \) |
\(1\) | \(1\) | \(e\left(\frac{25}{126}\right)\) | \(e\left(\frac{109}{126}\right)\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{10}{63}\right)\) | \(e\left(\frac{4}{63}\right)\) | \(e\left(\frac{29}{63}\right)\) | \(e\left(\frac{89}{126}\right)\) | \(e\left(\frac{46}{63}\right)\) | \(e\left(\frac{25}{42}\right)\) |
sage:chi.jacobi_sum(n)