Properties

Label 7448.jc
Modulus $7448$
Conductor $7448$
Order $126$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7448, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([63,63,108,91])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(155,7448)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7448\)
Conductor: \(7448\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(9\) \(11\) \(13\) \(15\) \(17\) \(23\) \(25\) \(27\)
\(\chi_{7448}(155,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{126}\right)\) \(e\left(\frac{115}{126}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{65}{126}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{31}{42}\right)\)
\(\chi_{7448}(211,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{126}\right)\) \(e\left(\frac{13}{126}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{13}{42}\right)\)
\(\chi_{7448}(547,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{126}\right)\) \(e\left(\frac{17}{126}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{17}{42}\right)\)
\(\chi_{7448}(603,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{126}\right)\) \(e\left(\frac{55}{126}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{53}{126}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{13}{42}\right)\)
\(\chi_{7448}(659,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{126}\right)\) \(e\left(\frac{65}{126}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{97}{126}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{23}{42}\right)\)
\(\chi_{7448}(827,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{126}\right)\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{103}{126}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{11}{42}\right)\)
\(\chi_{7448}(1219,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{25}{126}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{47}{126}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{25}{42}\right)\)
\(\chi_{7448}(1611,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{126}\right)\) \(e\left(\frac{53}{126}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{19}{126}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{11}{42}\right)\)
\(\chi_{7448}(1723,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{126}\right)\) \(e\left(\frac{101}{126}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{79}{126}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{17}{42}\right)\)
\(\chi_{7448}(1891,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{126}\right)\) \(e\left(\frac{5}{126}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{5}{42}\right)\)
\(\chi_{7448}(2283,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{126}\right)\) \(e\left(\frac{61}{126}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{29}{126}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{19}{42}\right)\)
\(\chi_{7448}(2339,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{126}\right)\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{59}{126}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{1}{42}\right)\)
\(\chi_{7448}(2675,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{126}\right)\) \(e\left(\frac{89}{126}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{1}{126}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{5}{42}\right)\)
\(\chi_{7448}(2731,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{126}\right)\) \(e\left(\frac{1}{126}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{17}{126}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{1}{42}\right)\)
\(\chi_{7448}(2787,\cdot)\) \(1\) \(1\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{11}{126}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{61}{126}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{11}{42}\right)\)
\(\chi_{7448}(2955,\cdot)\) \(1\) \(1\) \(e\left(\frac{125}{126}\right)\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{41}{42}\right)\)
\(\chi_{7448}(3347,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{126}\right)\) \(e\left(\frac{97}{126}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{11}{126}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{13}{42}\right)\)
\(\chi_{7448}(3403,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{121}{126}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{37}{42}\right)\)
\(\chi_{7448}(3739,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{126}\right)\) \(e\left(\frac{125}{126}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{41}{42}\right)\)
\(\chi_{7448}(3795,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{126}\right)\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{125}{126}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{37}{42}\right)\)
\(\chi_{7448}(3851,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{126}\right)\) \(e\left(\frac{47}{126}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{43}{126}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{5}{42}\right)\)
\(\chi_{7448}(4467,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{126}\right)\) \(e\left(\frac{31}{126}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{23}{126}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{31}{42}\right)\)
\(\chi_{7448}(4859,\cdot)\) \(1\) \(1\) \(e\left(\frac{115}{126}\right)\) \(e\left(\frac{73}{126}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{107}{126}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{31}{42}\right)\)
\(\chi_{7448}(4915,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{83}{126}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{25}{126}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{41}{42}\right)\)
\(\chi_{7448}(5083,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{126}\right)\) \(e\left(\frac{113}{126}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{31}{126}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{29}{42}\right)\)
\(\chi_{7448}(5475,\cdot)\) \(1\) \(1\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{43}{126}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{101}{126}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{1}{42}\right)\)
\(\chi_{7448}(5531,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{5}{126}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{25}{42}\right)\)
\(\chi_{7448}(5867,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{126}\right)\) \(e\left(\frac{71}{126}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{73}{126}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{29}{42}\right)\)
\(\chi_{7448}(5923,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{126}\right)\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{89}{126}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{25}{42}\right)\)
\(\chi_{7448}(6147,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{126}\right)\) \(e\left(\frac{23}{126}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{13}{126}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{23}{42}\right)\)
\(\chi_{7448}(6539,\cdot)\) \(1\) \(1\) \(e\left(\frac{121}{126}\right)\) \(e\left(\frac{79}{126}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{83}{126}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{37}{42}\right)\)