sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7448, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,0,8,14]))
pari:[g,chi] = znchar(Mod(2249,7448))
\(\chi_{7448}(121,\cdot)\)
\(\chi_{7448}(809,\cdot)\)
\(\chi_{7448}(1185,\cdot)\)
\(\chi_{7448}(1873,\cdot)\)
\(\chi_{7448}(2249,\cdot)\)
\(\chi_{7448}(2937,\cdot)\)
\(\chi_{7448}(4001,\cdot)\)
\(\chi_{7448}(4377,\cdot)\)
\(\chi_{7448}(5441,\cdot)\)
\(\chi_{7448}(6129,\cdot)\)
\(\chi_{7448}(6505,\cdot)\)
\(\chi_{7448}(7193,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1863,3725,3041,3137)\) → \((1,1,e\left(\frac{4}{21}\right),e\left(\frac{1}{3}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(23\) | \(25\) | \(27\) |
\( \chi_{ 7448 }(2249, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{4}{7}\right)\) |
sage:chi.jacobi_sum(n)