Properties

Label 7448.1263
Modulus $7448$
Conductor $3724$
Order $126$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7448, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([63,0,57,56]))
 
Copy content pari:[g,chi] = znchar(Mod(1263,7448))
 

Basic properties

Modulus: \(7448\)
Conductor: \(3724\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3724}(1263,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7448.jt

\(\chi_{7448}(199,\cdot)\) \(\chi_{7448}(271,\cdot)\) \(\chi_{7448}(367,\cdot)\) \(\chi_{7448}(479,\cdot)\) \(\chi_{7448}(663,\cdot)\) \(\chi_{7448}(719,\cdot)\) \(\chi_{7448}(1263,\cdot)\) \(\chi_{7448}(1335,\cdot)\) \(\chi_{7448}(1431,\cdot)\) \(\chi_{7448}(1543,\cdot)\) \(\chi_{7448}(1727,\cdot)\) \(\chi_{7448}(2327,\cdot)\) \(\chi_{7448}(2399,\cdot)\) \(\chi_{7448}(2495,\cdot)\) \(\chi_{7448}(2607,\cdot)\) \(\chi_{7448}(2791,\cdot)\) \(\chi_{7448}(2847,\cdot)\) \(\chi_{7448}(3391,\cdot)\) \(\chi_{7448}(3463,\cdot)\) \(\chi_{7448}(3671,\cdot)\) \(\chi_{7448}(3855,\cdot)\) \(\chi_{7448}(3911,\cdot)\) \(\chi_{7448}(4455,\cdot)\) \(\chi_{7448}(4623,\cdot)\) \(\chi_{7448}(4975,\cdot)\) \(\chi_{7448}(5591,\cdot)\) \(\chi_{7448}(5687,\cdot)\) \(\chi_{7448}(5799,\cdot)\) \(\chi_{7448}(5983,\cdot)\) \(\chi_{7448}(6039,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

Values on generators

\((1863,3725,3041,3137)\) → \((-1,1,e\left(\frac{19}{42}\right),e\left(\frac{4}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(23\)\(25\)\(27\)
\( \chi_{ 7448 }(1263, a) \) \(1\)\(1\)\(e\left(\frac{46}{63}\right)\)\(e\left(\frac{29}{126}\right)\)\(e\left(\frac{29}{63}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{19}{126}\right)\)\(e\left(\frac{121}{126}\right)\)\(e\left(\frac{95}{126}\right)\)\(e\left(\frac{73}{126}\right)\)\(e\left(\frac{29}{63}\right)\)\(e\left(\frac{4}{21}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7448 }(1263,a) \;\) at \(\;a = \) e.g. 2