Properties

Label 7448.jt
Modulus $7448$
Conductor $3724$
Order $126$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7448, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([63,0,3,56])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(199,7448)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7448\)
Conductor: \(3724\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(126\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 3724.ex
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 126 polynomial (not computed)

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(9\) \(11\) \(13\) \(15\) \(17\) \(23\) \(25\) \(27\)
\(\chi_{7448}(199,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{101}{126}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{1}{126}\right)\) \(e\left(\frac{13}{126}\right)\) \(e\left(\frac{5}{126}\right)\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{19}{21}\right)\)
\(\chi_{7448}(271,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{121}{126}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{101}{126}\right)\) \(e\left(\frac{53}{126}\right)\) \(e\left(\frac{1}{126}\right)\) \(e\left(\frac{83}{126}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{8}{21}\right)\)
\(\chi_{7448}(367,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{125}{126}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{121}{126}\right)\) \(e\left(\frac{61}{126}\right)\) \(e\left(\frac{101}{126}\right)\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{10}{21}\right)\)
\(\chi_{7448}(479,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{113}{126}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{61}{126}\right)\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{53}{126}\right)\) \(e\left(\frac{115}{126}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{4}{21}\right)\)
\(\chi_{7448}(663,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{79}{126}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{17}{126}\right)\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{125}{126}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{8}{21}\right)\)
\(\chi_{7448}(719,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{29}{126}\right)\) \(e\left(\frac{79}{126}\right)\) \(e\left(\frac{5}{126}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{2}{21}\right)\)
\(\chi_{7448}(1263,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{29}{126}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{19}{126}\right)\) \(e\left(\frac{121}{126}\right)\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{73}{126}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{4}{21}\right)\)
\(\chi_{7448}(1335,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{103}{126}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{11}{126}\right)\) \(e\left(\frac{17}{126}\right)\) \(e\left(\frac{55}{126}\right)\) \(e\left(\frac{29}{126}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{20}{21}\right)\)
\(\chi_{7448}(1431,\cdot)\) \(1\) \(1\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{53}{126}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{13}{126}\right)\) \(e\left(\frac{43}{126}\right)\) \(e\left(\frac{65}{126}\right)\) \(e\left(\frac{103}{126}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{16}{21}\right)\)
\(\chi_{7448}(1543,\cdot)\) \(1\) \(1\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{79}{126}\right)\) \(e\left(\frac{19}{126}\right)\) \(e\left(\frac{17}{126}\right)\) \(e\left(\frac{25}{126}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{10}{21}\right)\)
\(\chi_{7448}(1727,\cdot)\) \(1\) \(1\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{61}{126}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{53}{126}\right)\) \(e\left(\frac{59}{126}\right)\) \(e\left(\frac{13}{126}\right)\) \(e\left(\frac{71}{126}\right)\) \(e\left(\frac{61}{63}\right)\) \(e\left(\frac{20}{21}\right)\)
\(\chi_{7448}(2327,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{83}{126}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{103}{126}\right)\) \(e\left(\frac{59}{126}\right)\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{10}{21}\right)\)
\(\chi_{7448}(2399,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{47}{126}\right)\) \(e\left(\frac{107}{126}\right)\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{101}{126}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{11}{21}\right)\)
\(\chi_{7448}(2495,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{107}{126}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{31}{126}\right)\) \(e\left(\frac{25}{126}\right)\) \(e\left(\frac{29}{126}\right)\) \(e\left(\frac{13}{126}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{1}{21}\right)\)
\(\chi_{7448}(2607,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{97}{126}\right)\) \(e\left(\frac{1}{126}\right)\) \(e\left(\frac{107}{126}\right)\) \(e\left(\frac{61}{126}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{16}{21}\right)\)
\(\chi_{7448}(2791,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{43}{126}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{89}{126}\right)\) \(e\left(\frac{23}{126}\right)\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{17}{126}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{11}{21}\right)\)
\(\chi_{7448}(2847,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{73}{126}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{113}{126}\right)\) \(e\left(\frac{83}{126}\right)\) \(e\left(\frac{61}{126}\right)\) \(e\left(\frac{23}{126}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{5}{21}\right)\)
\(\chi_{7448}(3391,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{11}{126}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{55}{126}\right)\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{23}{126}\right)\) \(e\left(\frac{19}{126}\right)\) \(e\left(\frac{11}{63}\right)\) \(e\left(\frac{16}{21}\right)\)
\(\chi_{7448}(3463,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{83}{126}\right)\) \(e\left(\frac{71}{126}\right)\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{47}{126}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{2}{21}\right)\)
\(\chi_{7448}(3671,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{23}{126}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{115}{126}\right)\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{71}{126}\right)\) \(e\left(\frac{97}{126}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{1}{21}\right)\)
\(\chi_{7448}(3855,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{25}{126}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{125}{126}\right)\) \(e\left(\frac{113}{126}\right)\) \(e\left(\frac{121}{126}\right)\) \(e\left(\frac{89}{126}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{2}{21}\right)\)
\(\chi_{7448}(3911,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{55}{126}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{23}{126}\right)\) \(e\left(\frac{47}{126}\right)\) \(e\left(\frac{115}{126}\right)\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{17}{21}\right)\)
\(\chi_{7448}(4455,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{65}{126}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{73}{126}\right)\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{113}{126}\right)\) \(e\left(\frac{55}{126}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{1}{21}\right)\)
\(\chi_{7448}(4623,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{89}{126}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{67}{126}\right)\) \(e\left(\frac{115}{126}\right)\) \(e\left(\frac{83}{126}\right)\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{13}{21}\right)\)
\(\chi_{7448}(4975,\cdot)\) \(1\) \(1\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{37}{126}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{59}{126}\right)\) \(e\left(\frac{11}{126}\right)\) \(e\left(\frac{43}{126}\right)\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{37}{63}\right)\) \(e\left(\frac{8}{21}\right)\)
\(\chi_{7448}(5591,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{31}{126}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{29}{126}\right)\) \(e\left(\frac{125}{126}\right)\) \(e\left(\frac{19}{126}\right)\) \(e\left(\frac{65}{126}\right)\) \(e\left(\frac{31}{63}\right)\) \(e\left(\frac{5}{21}\right)\)
\(\chi_{7448}(5687,\cdot)\) \(1\) \(1\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{17}{126}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{85}{126}\right)\) \(e\left(\frac{97}{126}\right)\) \(e\left(\frac{47}{126}\right)\) \(e\left(\frac{121}{126}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{19}{21}\right)\)
\(\chi_{7448}(5799,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{5}{126}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{25}{126}\right)\) \(e\left(\frac{73}{126}\right)\) \(e\left(\frac{125}{126}\right)\) \(e\left(\frac{43}{126}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{13}{21}\right)\)
\(\chi_{7448}(5983,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{115}{126}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{71}{126}\right)\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{103}{126}\right)\) \(e\left(\frac{107}{126}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{5}{21}\right)\)
\(\chi_{7448}(6039,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{19}{126}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{95}{126}\right)\) \(e\left(\frac{101}{126}\right)\) \(e\left(\frac{97}{126}\right)\) \(e\left(\frac{113}{126}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{20}{21}\right)\)
\(\chi_{7448}(6583,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{63}\right)\) \(e\left(\frac{47}{126}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{109}{126}\right)\) \(e\left(\frac{31}{126}\right)\) \(e\left(\frac{41}{126}\right)\) \(e\left(\frac{1}{126}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{13}{21}\right)\)