sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(740, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,9,5]))
pari:[g,chi] = znchar(Mod(587,740))
| Modulus: | \(740\) | |
| Conductor: | \(740\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{740}(183,\cdot)\)
\(\chi_{740}(187,\cdot)\)
\(\chi_{740}(383,\cdot)\)
\(\chi_{740}(427,\cdot)\)
\(\chi_{740}(463,\cdot)\)
\(\chi_{740}(503,\cdot)\)
\(\chi_{740}(523,\cdot)\)
\(\chi_{740}(587,\cdot)\)
\(\chi_{740}(607,\cdot)\)
\(\chi_{740}(647,\cdot)\)
\(\chi_{740}(683,\cdot)\)
\(\chi_{740}(727,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((371,297,261)\) → \((-1,i,e\left(\frac{5}{36}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
| \( \chi_{ 740 }(587, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{31}{36}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)