Properties

Label 738.529
Modulus $738$
Conductor $369$
Order $15$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([20,24]))
 
Copy content pari:[g,chi] = znchar(Mod(529,738))
 

Basic properties

Modulus: \(738\)
Conductor: \(369\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(15\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{369}(160,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 738.s

\(\chi_{738}(133,\cdot)\) \(\chi_{738}(139,\cdot)\) \(\chi_{738}(223,\cdot)\) \(\chi_{738}(283,\cdot)\) \(\chi_{738}(385,\cdot)\) \(\chi_{738}(529,\cdot)\) \(\chi_{738}(625,\cdot)\) \(\chi_{738}(715,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 15 polynomial

Values on generators

\((83,703)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{4}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 738 }(529, a) \) \(1\)\(1\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{11}{15}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 738 }(529,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 738 }(529,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 738 }(529,·),\chi_{ 738 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 738 }(529,·)) \;\) at \(\; a,b = \) e.g. 1,2