Properties

Label 369.160
Modulus $369$
Conductor $369$
Order $15$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(369, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([20,24]))
 
Copy content pari:[g,chi] = znchar(Mod(160,369))
 

Basic properties

Modulus: \(369\)
Conductor: \(369\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(15\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 369.s

\(\chi_{369}(16,\cdot)\) \(\chi_{369}(133,\cdot)\) \(\chi_{369}(139,\cdot)\) \(\chi_{369}(160,\cdot)\) \(\chi_{369}(223,\cdot)\) \(\chi_{369}(256,\cdot)\) \(\chi_{369}(283,\cdot)\) \(\chi_{369}(346,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 15 polynomial

Values on generators

\((83,334)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{4}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 369 }(160, a) \) \(1\)\(1\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{13}{15}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 369 }(160,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 369 }(160,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 369 }(160,·),\chi_{ 369 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 369 }(160,·)) \;\) at \(\; a,b = \) e.g. 1,2