Properties

Label 69.g
Modulus $69$
Conductor $69$
Order $22$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(69, base_ring=CyclotomicField(22))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([11,1]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(5,69))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(69\)
Conductor: \(69\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(22\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: \(\Q(\zeta_{69})^+\)

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{69}(5,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{69}(11,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{69}(14,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{69}(17,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{69}(20,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{69}(38,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{69}(44,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{69}(53,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{69}(56,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{69}(65,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{5}{11}\right)\)