sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(69, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([11,19]))
pari:[g,chi] = znchar(Mod(53,69))
Modulus: | \(69\) | |
Conductor: | \(69\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(22\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{69}(5,\cdot)\)
\(\chi_{69}(11,\cdot)\)
\(\chi_{69}(14,\cdot)\)
\(\chi_{69}(17,\cdot)\)
\(\chi_{69}(20,\cdot)\)
\(\chi_{69}(38,\cdot)\)
\(\chi_{69}(44,\cdot)\)
\(\chi_{69}(53,\cdot)\)
\(\chi_{69}(56,\cdot)\)
\(\chi_{69}(65,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((47,28)\) → \((-1,e\left(\frac{19}{22}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 69 }(53, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)