sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(687, base_ring=CyclotomicField(38))
M = H._module
chi = DirichletCharacter(H, M([19,5]))
pari:[g,chi] = znchar(Mod(644,687))
| Modulus: | \(687\) | |
| Conductor: | \(687\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(38\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{687}(11,\cdot)\)
\(\chi_{687}(26,\cdot)\)
\(\chi_{687}(68,\cdot)\)
\(\chi_{687}(125,\cdot)\)
\(\chi_{687}(176,\cdot)\)
\(\chi_{687}(185,\cdot)\)
\(\chi_{687}(212,\cdot)\)
\(\chi_{687}(233,\cdot)\)
\(\chi_{687}(293,\cdot)\)
\(\chi_{687}(398,\cdot)\)
\(\chi_{687}(401,\cdot)\)
\(\chi_{687}(416,\cdot)\)
\(\chi_{687}(431,\cdot)\)
\(\chi_{687}(473,\cdot)\)
\(\chi_{687}(566,\cdot)\)
\(\chi_{687}(626,\cdot)\)
\(\chi_{687}(644,\cdot)\)
\(\chi_{687}(671,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((230,235)\) → \((-1,e\left(\frac{5}{38}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
| \( \chi_{ 687 }(644, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{5}{19}\right)\) | \(e\left(\frac{10}{19}\right)\) | \(e\left(\frac{15}{38}\right)\) | \(e\left(\frac{3}{38}\right)\) | \(e\left(\frac{15}{19}\right)\) | \(e\left(\frac{25}{38}\right)\) | \(e\left(\frac{31}{38}\right)\) | \(e\left(\frac{15}{38}\right)\) | \(e\left(\frac{13}{38}\right)\) | \(e\left(\frac{1}{19}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)