Normalized defining polynomial
\( x^{18} - x^{17} + x^{16} - x^{15} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \)
Invariants
Degree: | $18$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 9]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(-5480386857784802185939\)
\(\medspace = -\,19^{17}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(16.13\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(19\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{-19}) \) | ||
$\card{ \Gal(K/\Q) }$: | $18$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois and abelian over $\Q$. | |||
Conductor: | \(19\) | ||
Dirichlet character group: | $\lbrace$$\chi_{19}(1,·)$, $\chi_{19}(2,·)$, $\chi_{19}(3,·)$, $\chi_{19}(4,·)$, $\chi_{19}(5,·)$, $\chi_{19}(6,·)$, $\chi_{19}(7,·)$, $\chi_{19}(8,·)$, $\chi_{19}(9,·)$, $\chi_{19}(10,·)$, $\chi_{19}(11,·)$, $\chi_{19}(12,·)$, $\chi_{19}(13,·)$, $\chi_{19}(14,·)$, $\chi_{19}(15,·)$, $\chi_{19}(16,·)$, $\chi_{19}(17,·)$, $\chi_{19}(18,·)$$\rbrace$ | ||
This is a CM field. | |||
Reflex fields: | unavailable$^{256}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $8$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( a \)
(order $38$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a^{12}-a^{11}$, $a^{12}+a^{2}$, $a^{7}-a^{2}$, $a^{16}-a^{9}+a^{4}$, $a^{13}-a^{12}+a^{11}-a^{10}+a^{9}-a^{8}+a^{7}-a^{6}+a^{5}-a^{4}+a^{3}-a^{2}+a$, $a^{9}-a^{8}+a^{7}$, $a^{17}-a^{16}+a^{15}-a^{14}-a^{12}+a^{11}+a^{9}-a^{8}+a^{7}-a^{6}-a^{4}+a^{3}+a-1$, $a^{17}-1$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 22305.8950792 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) = \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}} \approx\frac{2^{0}\cdot(2\pi)^{9}\cdot 22305.8950792 \cdot 1}{38\cdot\sqrt{5480386857784802185939}}\approx 0.121017803346$
Galois group
A cyclic group of order 18 |
The 18 conjugacy class representatives for $C_{18}$ |
Character table for $C_{18}$ |
Intermediate fields
\(\Q(\sqrt{-19}) \), 3.3.361.1, 6.0.2476099.1, \(\Q(\zeta_{19})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $18$ | $18$ | ${\href{/padicField/5.9.0.1}{9} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{6}$ | ${\href{/padicField/11.3.0.1}{3} }^{6}$ | $18$ | ${\href{/padicField/17.9.0.1}{9} }^{2}$ | R | ${\href{/padicField/23.9.0.1}{9} }^{2}$ | $18$ | ${\href{/padicField/31.6.0.1}{6} }^{3}$ | ${\href{/padicField/37.2.0.1}{2} }^{9}$ | $18$ | ${\href{/padicField/43.9.0.1}{9} }^{2}$ | ${\href{/padicField/47.9.0.1}{9} }^{2}$ | $18$ | $18$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(19\)
| 19.18.17.14 | $x^{18} + 19$ | $18$ | $1$ | $17$ | $C_{18}$ | $[\ ]_{18}$ |