Properties

Label 669.p
Modulus $669$
Conductor $669$
Order $222$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(669, base_ring=CyclotomicField(222)) M = H._module chi = DirichletCharacter(H, M([111,89])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(5,669)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(669\)
Conductor: \(669\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(222\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{111})$
Fixed field: Number field defined by a degree 222 polynomial (not computed)

First 31 of 72 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{669}(5,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{74}\right)\) \(e\left(\frac{12}{37}\right)\) \(e\left(\frac{20}{111}\right)\) \(e\left(\frac{7}{37}\right)\) \(e\left(\frac{73}{74}\right)\) \(e\left(\frac{187}{222}\right)\) \(e\left(\frac{44}{111}\right)\) \(e\left(\frac{69}{74}\right)\) \(e\left(\frac{63}{74}\right)\) \(e\left(\frac{24}{37}\right)\)
\(\chi_{669}(11,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{74}\right)\) \(e\left(\frac{19}{37}\right)\) \(e\left(\frac{44}{111}\right)\) \(e\left(\frac{8}{37}\right)\) \(e\left(\frac{57}{74}\right)\) \(e\left(\frac{145}{222}\right)\) \(e\left(\frac{8}{111}\right)\) \(e\left(\frac{63}{74}\right)\) \(e\left(\frac{35}{74}\right)\) \(e\left(\frac{1}{37}\right)\)
\(\chi_{669}(20,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{74}\right)\) \(e\left(\frac{4}{37}\right)\) \(e\left(\frac{56}{111}\right)\) \(e\left(\frac{27}{37}\right)\) \(e\left(\frac{49}{74}\right)\) \(e\left(\frac{13}{222}\right)\) \(e\left(\frac{101}{111}\right)\) \(e\left(\frac{23}{74}\right)\) \(e\left(\frac{21}{74}\right)\) \(e\left(\frac{8}{37}\right)\)
\(\chi_{669}(23,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{74}\right)\) \(e\left(\frac{12}{37}\right)\) \(e\left(\frac{94}{111}\right)\) \(e\left(\frac{7}{37}\right)\) \(e\left(\frac{73}{74}\right)\) \(e\left(\frac{113}{222}\right)\) \(e\left(\frac{7}{111}\right)\) \(e\left(\frac{69}{74}\right)\) \(e\left(\frac{63}{74}\right)\) \(e\left(\frac{24}{37}\right)\)
\(\chi_{669}(35,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{74}\right)\) \(e\left(\frac{32}{37}\right)\) \(e\left(\frac{41}{111}\right)\) \(e\left(\frac{31}{37}\right)\) \(e\left(\frac{59}{74}\right)\) \(e\left(\frac{67}{222}\right)\) \(e\left(\frac{68}{111}\right)\) \(e\left(\frac{73}{74}\right)\) \(e\left(\frac{57}{74}\right)\) \(e\left(\frac{27}{37}\right)\)
\(\chi_{669}(44,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{74}\right)\) \(e\left(\frac{11}{37}\right)\) \(e\left(\frac{80}{111}\right)\) \(e\left(\frac{28}{37}\right)\) \(e\left(\frac{33}{74}\right)\) \(e\left(\frac{193}{222}\right)\) \(e\left(\frac{65}{111}\right)\) \(e\left(\frac{17}{74}\right)\) \(e\left(\frac{67}{74}\right)\) \(e\left(\frac{22}{37}\right)\)
\(\chi_{669}(71,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{74}\right)\) \(e\left(\frac{22}{37}\right)\) \(e\left(\frac{49}{111}\right)\) \(e\left(\frac{19}{37}\right)\) \(e\left(\frac{29}{74}\right)\) \(e\left(\frac{53}{222}\right)\) \(e\left(\frac{19}{111}\right)\) \(e\left(\frac{71}{74}\right)\) \(e\left(\frac{23}{74}\right)\) \(e\left(\frac{7}{37}\right)\)
\(\chi_{669}(77,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{74}\right)\) \(e\left(\frac{2}{37}\right)\) \(e\left(\frac{65}{111}\right)\) \(e\left(\frac{32}{37}\right)\) \(e\left(\frac{43}{74}\right)\) \(e\left(\frac{25}{222}\right)\) \(e\left(\frac{32}{111}\right)\) \(e\left(\frac{67}{74}\right)\) \(e\left(\frac{29}{74}\right)\) \(e\left(\frac{4}{37}\right)\)
\(\chi_{669}(80,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{74}\right)\) \(e\left(\frac{33}{37}\right)\) \(e\left(\frac{92}{111}\right)\) \(e\left(\frac{10}{37}\right)\) \(e\left(\frac{25}{74}\right)\) \(e\left(\frac{61}{222}\right)\) \(e\left(\frac{47}{111}\right)\) \(e\left(\frac{51}{74}\right)\) \(e\left(\frac{53}{74}\right)\) \(e\left(\frac{29}{37}\right)\)
\(\chi_{669}(92,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{74}\right)\) \(e\left(\frac{4}{37}\right)\) \(e\left(\frac{19}{111}\right)\) \(e\left(\frac{27}{37}\right)\) \(e\left(\frac{49}{74}\right)\) \(e\left(\frac{161}{222}\right)\) \(e\left(\frac{64}{111}\right)\) \(e\left(\frac{23}{74}\right)\) \(e\left(\frac{21}{74}\right)\) \(e\left(\frac{8}{37}\right)\)
\(\chi_{669}(107,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{74}\right)\) \(e\left(\frac{13}{37}\right)\) \(e\left(\frac{71}{111}\right)\) \(e\left(\frac{23}{37}\right)\) \(e\left(\frac{39}{74}\right)\) \(e\left(\frac{181}{222}\right)\) \(e\left(\frac{23}{111}\right)\) \(e\left(\frac{47}{74}\right)\) \(e\left(\frac{59}{74}\right)\) \(e\left(\frac{26}{37}\right)\)
\(\chi_{669}(113,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{74}\right)\) \(e\left(\frac{27}{37}\right)\) \(e\left(\frac{82}{111}\right)\) \(e\left(\frac{25}{37}\right)\) \(e\left(\frac{7}{74}\right)\) \(e\left(\frac{23}{222}\right)\) \(e\left(\frac{25}{111}\right)\) \(e\left(\frac{35}{74}\right)\) \(e\left(\frac{3}{74}\right)\) \(e\left(\frac{17}{37}\right)\)
\(\chi_{669}(122,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{74}\right)\) \(e\left(\frac{10}{37}\right)\) \(e\left(\frac{103}{111}\right)\) \(e\left(\frac{12}{37}\right)\) \(e\left(\frac{67}{74}\right)\) \(e\left(\frac{125}{222}\right)\) \(e\left(\frac{49}{111}\right)\) \(e\left(\frac{39}{74}\right)\) \(e\left(\frac{71}{74}\right)\) \(e\left(\frac{20}{37}\right)\)
\(\chi_{669}(134,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{74}\right)\) \(e\left(\frac{25}{37}\right)\) \(e\left(\frac{91}{111}\right)\) \(e\left(\frac{30}{37}\right)\) \(e\left(\frac{1}{74}\right)\) \(e\left(\frac{35}{222}\right)\) \(e\left(\frac{67}{111}\right)\) \(e\left(\frac{5}{74}\right)\) \(e\left(\frac{11}{74}\right)\) \(e\left(\frac{13}{37}\right)\)
\(\chi_{669}(137,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{74}\right)\) \(e\left(\frac{9}{37}\right)\) \(e\left(\frac{52}{111}\right)\) \(e\left(\frac{33}{37}\right)\) \(e\left(\frac{27}{74}\right)\) \(e\left(\frac{131}{222}\right)\) \(e\left(\frac{70}{111}\right)\) \(e\left(\frac{61}{74}\right)\) \(e\left(\frac{1}{74}\right)\) \(e\left(\frac{18}{37}\right)\)
\(\chi_{669}(140,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{74}\right)\) \(e\left(\frac{24}{37}\right)\) \(e\left(\frac{77}{111}\right)\) \(e\left(\frac{14}{37}\right)\) \(e\left(\frac{35}{74}\right)\) \(e\left(\frac{115}{222}\right)\) \(e\left(\frac{14}{111}\right)\) \(e\left(\frac{27}{74}\right)\) \(e\left(\frac{15}{74}\right)\) \(e\left(\frac{11}{37}\right)\)
\(\chi_{669}(149,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{74}\right)\) \(e\left(\frac{14}{37}\right)\) \(e\left(\frac{11}{111}\right)\) \(e\left(\frac{2}{37}\right)\) \(e\left(\frac{5}{74}\right)\) \(e\left(\frac{175}{222}\right)\) \(e\left(\frac{2}{111}\right)\) \(e\left(\frac{25}{74}\right)\) \(e\left(\frac{55}{74}\right)\) \(e\left(\frac{28}{37}\right)\)
\(\chi_{669}(158,\cdot)\) \(1\) \(1\) \(e\left(\frac{63}{74}\right)\) \(e\left(\frac{26}{37}\right)\) \(e\left(\frac{68}{111}\right)\) \(e\left(\frac{9}{37}\right)\) \(e\left(\frac{41}{74}\right)\) \(e\left(\frac{103}{222}\right)\) \(e\left(\frac{83}{111}\right)\) \(e\left(\frac{57}{74}\right)\) \(e\left(\frac{7}{74}\right)\) \(e\left(\frac{15}{37}\right)\)
\(\chi_{669}(161,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{74}\right)\) \(e\left(\frac{32}{37}\right)\) \(e\left(\frac{4}{111}\right)\) \(e\left(\frac{31}{37}\right)\) \(e\left(\frac{59}{74}\right)\) \(e\left(\frac{215}{222}\right)\) \(e\left(\frac{31}{111}\right)\) \(e\left(\frac{73}{74}\right)\) \(e\left(\frac{57}{74}\right)\) \(e\left(\frac{27}{37}\right)\)
\(\chi_{669}(170,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{74}\right)\) \(e\left(\frac{27}{37}\right)\) \(e\left(\frac{8}{111}\right)\) \(e\left(\frac{25}{37}\right)\) \(e\left(\frac{7}{74}\right)\) \(e\left(\frac{97}{222}\right)\) \(e\left(\frac{62}{111}\right)\) \(e\left(\frac{35}{74}\right)\) \(e\left(\frac{3}{74}\right)\) \(e\left(\frac{17}{37}\right)\)
\(\chi_{669}(173,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{74}\right)\) \(e\left(\frac{20}{37}\right)\) \(e\left(\frac{58}{111}\right)\) \(e\left(\frac{24}{37}\right)\) \(e\left(\frac{23}{74}\right)\) \(e\left(\frac{65}{222}\right)\) \(e\left(\frac{61}{111}\right)\) \(e\left(\frac{41}{74}\right)\) \(e\left(\frac{31}{74}\right)\) \(e\left(\frac{3}{37}\right)\)
\(\chi_{669}(176,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{74}\right)\) \(e\left(\frac{3}{37}\right)\) \(e\left(\frac{5}{111}\right)\) \(e\left(\frac{11}{37}\right)\) \(e\left(\frac{9}{74}\right)\) \(e\left(\frac{19}{222}\right)\) \(e\left(\frac{11}{111}\right)\) \(e\left(\frac{45}{74}\right)\) \(e\left(\frac{25}{74}\right)\) \(e\left(\frac{6}{37}\right)\)
\(\chi_{669}(185,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{74}\right)\) \(e\left(\frac{30}{37}\right)\) \(e\left(\frac{13}{111}\right)\) \(e\left(\frac{36}{37}\right)\) \(e\left(\frac{53}{74}\right)\) \(e\left(\frac{5}{222}\right)\) \(e\left(\frac{73}{111}\right)\) \(e\left(\frac{43}{74}\right)\) \(e\left(\frac{65}{74}\right)\) \(e\left(\frac{23}{37}\right)\)
\(\chi_{669}(194,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{74}\right)\) \(e\left(\frac{21}{37}\right)\) \(e\left(\frac{35}{111}\right)\) \(e\left(\frac{3}{37}\right)\) \(e\left(\frac{63}{74}\right)\) \(e\left(\frac{133}{222}\right)\) \(e\left(\frac{77}{111}\right)\) \(e\left(\frac{19}{74}\right)\) \(e\left(\frac{27}{74}\right)\) \(e\left(\frac{5}{37}\right)\)
\(\chi_{669}(233,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{74}\right)\) \(e\left(\frac{8}{37}\right)\) \(e\left(\frac{38}{111}\right)\) \(e\left(\frac{17}{37}\right)\) \(e\left(\frac{61}{74}\right)\) \(e\left(\frac{211}{222}\right)\) \(e\left(\frac{17}{111}\right)\) \(e\left(\frac{9}{74}\right)\) \(e\left(\frac{5}{74}\right)\) \(e\left(\frac{16}{37}\right)\)
\(\chi_{669}(245,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{74}\right)\) \(e\left(\frac{15}{37}\right)\) \(e\left(\frac{62}{111}\right)\) \(e\left(\frac{18}{37}\right)\) \(e\left(\frac{45}{74}\right)\) \(e\left(\frac{169}{222}\right)\) \(e\left(\frac{92}{111}\right)\) \(e\left(\frac{3}{74}\right)\) \(e\left(\frac{51}{74}\right)\) \(e\left(\frac{30}{37}\right)\)
\(\chi_{669}(269,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{74}\right)\) \(e\left(\frac{8}{37}\right)\) \(e\left(\frac{1}{111}\right)\) \(e\left(\frac{17}{37}\right)\) \(e\left(\frac{61}{74}\right)\) \(e\left(\frac{137}{222}\right)\) \(e\left(\frac{91}{111}\right)\) \(e\left(\frac{9}{74}\right)\) \(e\left(\frac{5}{74}\right)\) \(e\left(\frac{16}{37}\right)\)
\(\chi_{669}(284,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{74}\right)\) \(e\left(\frac{14}{37}\right)\) \(e\left(\frac{85}{111}\right)\) \(e\left(\frac{2}{37}\right)\) \(e\left(\frac{5}{74}\right)\) \(e\left(\frac{101}{222}\right)\) \(e\left(\frac{76}{111}\right)\) \(e\left(\frac{25}{74}\right)\) \(e\left(\frac{55}{74}\right)\) \(e\left(\frac{28}{37}\right)\)
\(\chi_{669}(290,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{74}\right)\) \(e\left(\frac{29}{37}\right)\) \(e\left(\frac{73}{111}\right)\) \(e\left(\frac{20}{37}\right)\) \(e\left(\frac{13}{74}\right)\) \(e\left(\frac{11}{222}\right)\) \(e\left(\frac{94}{111}\right)\) \(e\left(\frac{65}{74}\right)\) \(e\left(\frac{69}{74}\right)\) \(e\left(\frac{21}{37}\right)\)
\(\chi_{669}(293,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{74}\right)\) \(e\left(\frac{28}{37}\right)\) \(e\left(\frac{59}{111}\right)\) \(e\left(\frac{4}{37}\right)\) \(e\left(\frac{47}{74}\right)\) \(e\left(\frac{91}{222}\right)\) \(e\left(\frac{41}{111}\right)\) \(e\left(\frac{13}{74}\right)\) \(e\left(\frac{73}{74}\right)\) \(e\left(\frac{19}{37}\right)\)
\(\chi_{669}(302,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{74}\right)\) \(e\left(\frac{30}{37}\right)\) \(e\left(\frac{50}{111}\right)\) \(e\left(\frac{36}{37}\right)\) \(e\left(\frac{53}{74}\right)\) \(e\left(\frac{79}{222}\right)\) \(e\left(\frac{110}{111}\right)\) \(e\left(\frac{43}{74}\right)\) \(e\left(\frac{65}{74}\right)\) \(e\left(\frac{23}{37}\right)\)