sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(669, base_ring=CyclotomicField(222))
M = H._module
chi = DirichletCharacter(H, M([111,221]))
pari:[g,chi] = znchar(Mod(149,669))
Modulus: | \(669\) | |
Conductor: | \(669\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(222\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{669}(5,\cdot)\)
\(\chi_{669}(11,\cdot)\)
\(\chi_{669}(20,\cdot)\)
\(\chi_{669}(23,\cdot)\)
\(\chi_{669}(35,\cdot)\)
\(\chi_{669}(44,\cdot)\)
\(\chi_{669}(71,\cdot)\)
\(\chi_{669}(77,\cdot)\)
\(\chi_{669}(80,\cdot)\)
\(\chi_{669}(92,\cdot)\)
\(\chi_{669}(107,\cdot)\)
\(\chi_{669}(113,\cdot)\)
\(\chi_{669}(122,\cdot)\)
\(\chi_{669}(134,\cdot)\)
\(\chi_{669}(137,\cdot)\)
\(\chi_{669}(140,\cdot)\)
\(\chi_{669}(149,\cdot)\)
\(\chi_{669}(158,\cdot)\)
\(\chi_{669}(161,\cdot)\)
\(\chi_{669}(170,\cdot)\)
\(\chi_{669}(173,\cdot)\)
\(\chi_{669}(176,\cdot)\)
\(\chi_{669}(185,\cdot)\)
\(\chi_{669}(194,\cdot)\)
\(\chi_{669}(233,\cdot)\)
\(\chi_{669}(245,\cdot)\)
\(\chi_{669}(269,\cdot)\)
\(\chi_{669}(284,\cdot)\)
\(\chi_{669}(290,\cdot)\)
\(\chi_{669}(293,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((224,226)\) → \((-1,e\left(\frac{221}{222}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 669 }(149, a) \) |
\(1\) | \(1\) | \(e\left(\frac{51}{74}\right)\) | \(e\left(\frac{14}{37}\right)\) | \(e\left(\frac{11}{111}\right)\) | \(e\left(\frac{2}{37}\right)\) | \(e\left(\frac{5}{74}\right)\) | \(e\left(\frac{175}{222}\right)\) | \(e\left(\frac{2}{111}\right)\) | \(e\left(\frac{25}{74}\right)\) | \(e\left(\frac{55}{74}\right)\) | \(e\left(\frac{28}{37}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)