Properties

Label 669.149
Modulus $669$
Conductor $669$
Order $222$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(669, base_ring=CyclotomicField(222)) M = H._module chi = DirichletCharacter(H, M([111,221]))
 
Copy content pari:[g,chi] = znchar(Mod(149,669))
 

Basic properties

Modulus: \(669\)
Conductor: \(669\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(222\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 669.p

\(\chi_{669}(5,\cdot)\) \(\chi_{669}(11,\cdot)\) \(\chi_{669}(20,\cdot)\) \(\chi_{669}(23,\cdot)\) \(\chi_{669}(35,\cdot)\) \(\chi_{669}(44,\cdot)\) \(\chi_{669}(71,\cdot)\) \(\chi_{669}(77,\cdot)\) \(\chi_{669}(80,\cdot)\) \(\chi_{669}(92,\cdot)\) \(\chi_{669}(107,\cdot)\) \(\chi_{669}(113,\cdot)\) \(\chi_{669}(122,\cdot)\) \(\chi_{669}(134,\cdot)\) \(\chi_{669}(137,\cdot)\) \(\chi_{669}(140,\cdot)\) \(\chi_{669}(149,\cdot)\) \(\chi_{669}(158,\cdot)\) \(\chi_{669}(161,\cdot)\) \(\chi_{669}(170,\cdot)\) \(\chi_{669}(173,\cdot)\) \(\chi_{669}(176,\cdot)\) \(\chi_{669}(185,\cdot)\) \(\chi_{669}(194,\cdot)\) \(\chi_{669}(233,\cdot)\) \(\chi_{669}(245,\cdot)\) \(\chi_{669}(269,\cdot)\) \(\chi_{669}(284,\cdot)\) \(\chi_{669}(290,\cdot)\) \(\chi_{669}(293,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{111})$
Fixed field: Number field defined by a degree 222 polynomial (not computed)

Values on generators

\((224,226)\) → \((-1,e\left(\frac{221}{222}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 669 }(149, a) \) \(1\)\(1\)\(e\left(\frac{51}{74}\right)\)\(e\left(\frac{14}{37}\right)\)\(e\left(\frac{11}{111}\right)\)\(e\left(\frac{2}{37}\right)\)\(e\left(\frac{5}{74}\right)\)\(e\left(\frac{175}{222}\right)\)\(e\left(\frac{2}{111}\right)\)\(e\left(\frac{25}{74}\right)\)\(e\left(\frac{55}{74}\right)\)\(e\left(\frac{28}{37}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 669 }(149,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 669 }(149,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 669 }(149,·),\chi_{ 669 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 669 }(149,·)) \;\) at \(\; a,b = \) e.g. 1,2