sage: H = DirichletGroup(65)
pari: g = idealstar(,65,2)
Character group
sage: G.order()
pari: g.no
| ||
Order | = | 48 |
sage: H.invariants()
pari: g.cyc
| ||
Structure | = | \(C_{4}\times C_{12}\) |
sage: H.gens()
pari: g.gen
| ||
Generators | = | $\chi_{65}(27,\cdot)$, $\chi_{65}(41,\cdot)$ |
First 32 of 48 characters
Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.
Character | Orbit | Order | Primitive | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{65}(1,\cdot)\) | 65.a | 1 | no | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) |
\(\chi_{65}(2,\cdot)\) | 65.o | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(-1\) |
\(\chi_{65}(3,\cdot)\) | 65.q | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-i\) | \(-1\) |
\(\chi_{65}(4,\cdot)\) | 65.l | 6 | yes | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(1\) |
\(\chi_{65}(6,\cdot)\) | 65.p | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-1\) | \(1\) |
\(\chi_{65}(7,\cdot)\) | 65.t | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(-1\) |
\(\chi_{65}(8,\cdot)\) | 65.k | 4 | yes | \(1\) | \(1\) | \(1\) | \(i\) | \(1\) | \(i\) | \(-1\) | \(1\) | \(-1\) | \(-i\) | \(i\) | \(-1\) |
\(\chi_{65}(9,\cdot)\) | 65.n | 6 | yes | \(1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(1\) |
\(\chi_{65}(11,\cdot)\) | 65.p | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-1\) | \(1\) |
\(\chi_{65}(12,\cdot)\) | 65.h | 4 | yes | \(-1\) | \(1\) | \(-i\) | \(-i\) | \(-1\) | \(-1\) | \(-i\) | \(i\) | \(-1\) | \(-1\) | \(i\) | \(-1\) |
\(\chi_{65}(14,\cdot)\) | 65.b | 2 | no | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(1\) |
\(\chi_{65}(16,\cdot)\) | 65.e | 3 | no | \(1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(1\) |
\(\chi_{65}(17,\cdot)\) | 65.r | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(i\) | \(-1\) |
\(\chi_{65}(18,\cdot)\) | 65.f | 4 | yes | \(1\) | \(1\) | \(-1\) | \(i\) | \(1\) | \(-i\) | \(1\) | \(-1\) | \(-1\) | \(i\) | \(i\) | \(-1\) |
\(\chi_{65}(19,\cdot)\) | 65.s | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(1\) | \(1\) |
\(\chi_{65}(21,\cdot)\) | 65.j | 4 | no | \(-1\) | \(1\) | \(i\) | \(1\) | \(-1\) | \(i\) | \(-i\) | \(-i\) | \(1\) | \(-i\) | \(-1\) | \(1\) |
\(\chi_{65}(22,\cdot)\) | 65.q | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(i\) | \(-1\) |
\(\chi_{65}(23,\cdot)\) | 65.r | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(-1\) |
\(\chi_{65}(24,\cdot)\) | 65.s | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(1\) | \(1\) |
\(\chi_{65}(27,\cdot)\) | 65.i | 4 | no | \(-1\) | \(1\) | \(i\) | \(-i\) | \(-1\) | \(1\) | \(i\) | \(-i\) | \(-1\) | \(1\) | \(i\) | \(-1\) |
\(\chi_{65}(28,\cdot)\) | 65.t | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(-1\) |
\(\chi_{65}(29,\cdot)\) | 65.n | 6 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(-1\) | \(1\) |
\(\chi_{65}(31,\cdot)\) | 65.j | 4 | no | \(-1\) | \(1\) | \(-i\) | \(1\) | \(-1\) | \(-i\) | \(i\) | \(i\) | \(1\) | \(i\) | \(-1\) | \(1\) |
\(\chi_{65}(32,\cdot)\) | 65.o | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(-1\) |
\(\chi_{65}(33,\cdot)\) | 65.o | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(i\) | \(-1\) |
\(\chi_{65}(34,\cdot)\) | 65.g | 4 | yes | \(-1\) | \(1\) | \(-i\) | \(-1\) | \(-1\) | \(i\) | \(i\) | \(i\) | \(1\) | \(-i\) | \(1\) | \(1\) |
\(\chi_{65}(36,\cdot)\) | 65.m | 6 | no | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-1\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(1\) |
\(\chi_{65}(37,\cdot)\) | 65.t | 12 | yes | \(1\) | \(1\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(-1\) |
\(\chi_{65}(38,\cdot)\) | 65.h | 4 | yes | \(-1\) | \(1\) | \(i\) | \(i\) | \(-1\) | \(-1\) | \(i\) | \(-i\) | \(-1\) | \(-1\) | \(-i\) | \(-1\) |
\(\chi_{65}(41,\cdot)\) | 65.p | 12 | no | \(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-1\) | \(1\) |
\(\chi_{65}(42,\cdot)\) | 65.q | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(-i\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(i\) | \(-1\) |
\(\chi_{65}(43,\cdot)\) | 65.r | 12 | yes | \(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(-i\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(-1\) |