sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(65, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([3,1]))
pari:[g,chi] = znchar(Mod(8,65))
Modulus: | \(65\) | |
Conductor: | \(65\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(4\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{65}(8,\cdot)\)
\(\chi_{65}(57,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((27,41)\) → \((-i,i)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 65 }(8, a) \) |
\(1\) | \(1\) | \(1\) | \(i\) | \(1\) | \(i\) | \(-1\) | \(1\) | \(-1\) | \(-i\) | \(i\) | \(-1\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)