Properties

Label 637.328
Modulus $637$
Conductor $637$
Order $42$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(637, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,14]))
 
pari: [g,chi] = znchar(Mod(328,637))
 

Basic properties

Modulus: \(637\)
Conductor: \(637\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 637.bw

\(\chi_{637}(55,\cdot)\) \(\chi_{637}(139,\cdot)\) \(\chi_{637}(230,\cdot)\) \(\chi_{637}(237,\cdot)\) \(\chi_{637}(321,\cdot)\) \(\chi_{637}(328,\cdot)\) \(\chi_{637}(412,\cdot)\) \(\chi_{637}(419,\cdot)\) \(\chi_{637}(503,\cdot)\) \(\chi_{637}(510,\cdot)\) \(\chi_{637}(594,\cdot)\) \(\chi_{637}(601,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((248,197)\) → \((e\left(\frac{3}{14}\right),e\left(\frac{1}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 637 }(328, a) \) \(-1\)\(1\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{23}{42}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{19}{42}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{2}{21}\right)\)\(e\left(\frac{5}{42}\right)\)\(e\left(\frac{19}{21}\right)\)\(e\left(\frac{5}{14}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 637 }(328,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 637 }(328,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 637 }(328,·),\chi_{ 637 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 637 }(328,·)) \;\) at \(\; a,b = \) e.g. 1,2