Properties

Label 6336.553
Modulus $6336$
Conductor $3168$
Order $120$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(120)) M = H._module chi = DirichletCharacter(H, M([0,105,40,96]))
 
Copy content pari:[g,chi] = znchar(Mod(553,6336))
 

Basic properties

Modulus: \(6336\)
Conductor: \(3168\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(120\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3168}(1741,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6336.fu

\(\chi_{6336}(25,\cdot)\) \(\chi_{6336}(169,\cdot)\) \(\chi_{6336}(313,\cdot)\) \(\chi_{6336}(553,\cdot)\) \(\chi_{6336}(697,\cdot)\) \(\chi_{6336}(841,\cdot)\) \(\chi_{6336}(889,\cdot)\) \(\chi_{6336}(1417,\cdot)\) \(\chi_{6336}(1609,\cdot)\) \(\chi_{6336}(1753,\cdot)\) \(\chi_{6336}(1897,\cdot)\) \(\chi_{6336}(2137,\cdot)\) \(\chi_{6336}(2281,\cdot)\) \(\chi_{6336}(2425,\cdot)\) \(\chi_{6336}(2473,\cdot)\) \(\chi_{6336}(3001,\cdot)\) \(\chi_{6336}(3193,\cdot)\) \(\chi_{6336}(3337,\cdot)\) \(\chi_{6336}(3481,\cdot)\) \(\chi_{6336}(3721,\cdot)\) \(\chi_{6336}(3865,\cdot)\) \(\chi_{6336}(4009,\cdot)\) \(\chi_{6336}(4057,\cdot)\) \(\chi_{6336}(4585,\cdot)\) \(\chi_{6336}(4777,\cdot)\) \(\chi_{6336}(4921,\cdot)\) \(\chi_{6336}(5065,\cdot)\) \(\chi_{6336}(5305,\cdot)\) \(\chi_{6336}(5449,\cdot)\) \(\chi_{6336}(5593,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{120})$
Fixed field: Number field defined by a degree 120 polynomial (not computed)

Values on generators

\((4159,4357,3521,1729)\) → \((1,e\left(\frac{7}{8}\right),e\left(\frac{1}{3}\right),e\left(\frac{4}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 6336 }(553, a) \) \(1\)\(1\)\(e\left(\frac{89}{120}\right)\)\(e\left(\frac{41}{60}\right)\)\(e\left(\frac{71}{120}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{21}{40}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{29}{60}\right)\)\(e\left(\frac{67}{120}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{17}{40}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6336 }(553,a) \;\) at \(\;a = \) e.g. 2