Properties

Label 6336.fu
Modulus $6336$
Conductor $3168$
Order $120$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(120)) M = H._module chi = DirichletCharacter(H, M([0,15,80,96])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(25,6336)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6336\)
Conductor: \(3168\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(120\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 3168.ew
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{120})$
Fixed field: Number field defined by a degree 120 polynomial (not computed)

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{6336}(25,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{120}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{77}{120}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{40}\right)\)
\(\chi_{6336}(169,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{79}{120}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{83}{120}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{33}{40}\right)\)
\(\chi_{6336}(313,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{120}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{41}{120}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{11}{40}\right)\)
\(\chi_{6336}(553,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{71}{120}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{67}{120}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{17}{40}\right)\)
\(\chi_{6336}(697,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{120}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{73}{120}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{3}{40}\right)\)
\(\chi_{6336}(841,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{120}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{83}{120}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{21}{40}\right)\)
\(\chi_{6336}(889,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{120}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{37}{120}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{19}{40}\right)\)
\(\chi_{6336}(1417,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{107}{120}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{79}{120}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{29}{40}\right)\)
\(\chi_{6336}(1609,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{120}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{91}{120}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{47}{120}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{37}{40}\right)\)
\(\chi_{6336}(1753,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{49}{120}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{23}{40}\right)\)
\(\chi_{6336}(1897,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{120}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{103}{120}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{11}{120}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{40}\right)\)
\(\chi_{6336}(2137,\cdot)\) \(1\) \(1\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{41}{120}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{37}{120}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{7}{40}\right)\)
\(\chi_{6336}(2281,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{120}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{43}{120}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{33}{40}\right)\)
\(\chi_{6336}(2425,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{120}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{11}{40}\right)\)
\(\chi_{6336}(2473,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{120}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{120}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{59}{120}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{9}{40}\right)\)
\(\chi_{6336}(3001,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{120}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{77}{120}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{49}{120}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{19}{40}\right)\)
\(\chi_{6336}(3193,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{120}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{61}{120}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{17}{120}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{27}{40}\right)\)
\(\chi_{6336}(3337,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{120}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{19}{120}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{23}{120}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{40}\right)\)
\(\chi_{6336}(3481,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{120}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{73}{120}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{101}{120}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{31}{40}\right)\)
\(\chi_{6336}(3721,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{11}{120}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{7}{120}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{37}{40}\right)\)
\(\chi_{6336}(3865,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{120}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{23}{40}\right)\)
\(\chi_{6336}(4009,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{120}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{23}{120}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{91}{120}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{40}\right)\)
\(\chi_{6336}(4057,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{120}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{97}{120}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{39}{40}\right)\)
\(\chi_{6336}(4585,\cdot)\) \(1\) \(1\) \(e\left(\frac{113}{120}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{47}{120}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{19}{120}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{9}{40}\right)\)
\(\chi_{6336}(4777,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{120}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{107}{120}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{17}{40}\right)\)
\(\chi_{6336}(4921,\cdot)\) \(1\) \(1\) \(e\left(\frac{91}{120}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{109}{120}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{113}{120}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{3}{40}\right)\)
\(\chi_{6336}(5065,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{120}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{43}{120}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{71}{120}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{21}{40}\right)\)
\(\chi_{6336}(5305,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{120}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{101}{120}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{97}{120}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{27}{40}\right)\)
\(\chi_{6336}(5449,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{120}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{59}{120}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{103}{120}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{13}{40}\right)\)
\(\chi_{6336}(5593,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{120}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{113}{120}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{61}{120}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{31}{40}\right)\)
\(\chi_{6336}(5641,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{67}{120}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{29}{40}\right)\)