Properties

Label 6336.251
Modulus $6336$
Conductor $2112$
Order $80$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6336, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([40,5,40,48]))
 
Copy content pari:[g,chi] = znchar(Mod(251,6336))
 

Basic properties

Modulus: \(6336\)
Conductor: \(2112\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(80\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2112}(251,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6336.fh

\(\chi_{6336}(179,\cdot)\) \(\chi_{6336}(251,\cdot)\) \(\chi_{6336}(323,\cdot)\) \(\chi_{6336}(467,\cdot)\) \(\chi_{6336}(971,\cdot)\) \(\chi_{6336}(1043,\cdot)\) \(\chi_{6336}(1115,\cdot)\) \(\chi_{6336}(1259,\cdot)\) \(\chi_{6336}(1763,\cdot)\) \(\chi_{6336}(1835,\cdot)\) \(\chi_{6336}(1907,\cdot)\) \(\chi_{6336}(2051,\cdot)\) \(\chi_{6336}(2555,\cdot)\) \(\chi_{6336}(2627,\cdot)\) \(\chi_{6336}(2699,\cdot)\) \(\chi_{6336}(2843,\cdot)\) \(\chi_{6336}(3347,\cdot)\) \(\chi_{6336}(3419,\cdot)\) \(\chi_{6336}(3491,\cdot)\) \(\chi_{6336}(3635,\cdot)\) \(\chi_{6336}(4139,\cdot)\) \(\chi_{6336}(4211,\cdot)\) \(\chi_{6336}(4283,\cdot)\) \(\chi_{6336}(4427,\cdot)\) \(\chi_{6336}(4931,\cdot)\) \(\chi_{6336}(5003,\cdot)\) \(\chi_{6336}(5075,\cdot)\) \(\chi_{6336}(5219,\cdot)\) \(\chi_{6336}(5723,\cdot)\) \(\chi_{6336}(5795,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((4159,4357,3521,1729)\) → \((-1,e\left(\frac{1}{16}\right),-1,e\left(\frac{3}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 6336 }(251, a) \) \(1\)\(1\)\(e\left(\frac{77}{80}\right)\)\(e\left(\frac{13}{40}\right)\)\(e\left(\frac{43}{80}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{59}{80}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{37}{40}\right)\)\(e\left(\frac{31}{80}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{23}{80}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6336 }(251,a) \;\) at \(\;a = \) e.g. 2