Properties

Label 2112.251
Modulus $2112$
Conductor $2112$
Order $80$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2112, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([40,5,40,48]))
 
Copy content pari:[g,chi] = znchar(Mod(251,2112))
 

Basic properties

Modulus: \(2112\)
Conductor: \(2112\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(80\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2112.cv

\(\chi_{2112}(59,\cdot)\) \(\chi_{2112}(179,\cdot)\) \(\chi_{2112}(203,\cdot)\) \(\chi_{2112}(251,\cdot)\) \(\chi_{2112}(323,\cdot)\) \(\chi_{2112}(443,\cdot)\) \(\chi_{2112}(467,\cdot)\) \(\chi_{2112}(515,\cdot)\) \(\chi_{2112}(587,\cdot)\) \(\chi_{2112}(707,\cdot)\) \(\chi_{2112}(731,\cdot)\) \(\chi_{2112}(779,\cdot)\) \(\chi_{2112}(851,\cdot)\) \(\chi_{2112}(971,\cdot)\) \(\chi_{2112}(995,\cdot)\) \(\chi_{2112}(1043,\cdot)\) \(\chi_{2112}(1115,\cdot)\) \(\chi_{2112}(1235,\cdot)\) \(\chi_{2112}(1259,\cdot)\) \(\chi_{2112}(1307,\cdot)\) \(\chi_{2112}(1379,\cdot)\) \(\chi_{2112}(1499,\cdot)\) \(\chi_{2112}(1523,\cdot)\) \(\chi_{2112}(1571,\cdot)\) \(\chi_{2112}(1643,\cdot)\) \(\chi_{2112}(1763,\cdot)\) \(\chi_{2112}(1787,\cdot)\) \(\chi_{2112}(1835,\cdot)\) \(\chi_{2112}(1907,\cdot)\) \(\chi_{2112}(2027,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((2047,133,1409,1729)\) → \((-1,e\left(\frac{1}{16}\right),-1,e\left(\frac{3}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 2112 }(251, a) \) \(1\)\(1\)\(e\left(\frac{77}{80}\right)\)\(e\left(\frac{13}{40}\right)\)\(e\left(\frac{43}{80}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{59}{80}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{37}{40}\right)\)\(e\left(\frac{31}{80}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{23}{80}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2112 }(251,a) \;\) at \(\;a = \) e.g. 2