sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2112, base_ring=CyclotomicField(80))
M = H._module
chi = DirichletCharacter(H, M([40,5,40,48]))
pari:[g,chi] = znchar(Mod(251,2112))
Modulus: | \(2112\) | |
Conductor: | \(2112\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(80\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2112}(59,\cdot)\)
\(\chi_{2112}(179,\cdot)\)
\(\chi_{2112}(203,\cdot)\)
\(\chi_{2112}(251,\cdot)\)
\(\chi_{2112}(323,\cdot)\)
\(\chi_{2112}(443,\cdot)\)
\(\chi_{2112}(467,\cdot)\)
\(\chi_{2112}(515,\cdot)\)
\(\chi_{2112}(587,\cdot)\)
\(\chi_{2112}(707,\cdot)\)
\(\chi_{2112}(731,\cdot)\)
\(\chi_{2112}(779,\cdot)\)
\(\chi_{2112}(851,\cdot)\)
\(\chi_{2112}(971,\cdot)\)
\(\chi_{2112}(995,\cdot)\)
\(\chi_{2112}(1043,\cdot)\)
\(\chi_{2112}(1115,\cdot)\)
\(\chi_{2112}(1235,\cdot)\)
\(\chi_{2112}(1259,\cdot)\)
\(\chi_{2112}(1307,\cdot)\)
\(\chi_{2112}(1379,\cdot)\)
\(\chi_{2112}(1499,\cdot)\)
\(\chi_{2112}(1523,\cdot)\)
\(\chi_{2112}(1571,\cdot)\)
\(\chi_{2112}(1643,\cdot)\)
\(\chi_{2112}(1763,\cdot)\)
\(\chi_{2112}(1787,\cdot)\)
\(\chi_{2112}(1835,\cdot)\)
\(\chi_{2112}(1907,\cdot)\)
\(\chi_{2112}(2027,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2047,133,1409,1729)\) → \((-1,e\left(\frac{1}{16}\right),-1,e\left(\frac{3}{5}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 2112 }(251, a) \) |
\(1\) | \(1\) | \(e\left(\frac{77}{80}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{43}{80}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{59}{80}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{31}{80}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{23}{80}\right)\) |
sage:chi.jacobi_sum(n)