Properties

Label 6304.753
Modulus $6304$
Conductor $1576$
Order $196$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6304, base_ring=CyclotomicField(196)) M = H._module chi = DirichletCharacter(H, M([0,98,137]))
 
Copy content pari:[g,chi] = znchar(Mod(753,6304))
 

Basic properties

Modulus: \(6304\)
Conductor: \(1576\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(196\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1576}(1541,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6304.cm

\(\chi_{6304}(17,\cdot)\) \(\chi_{6304}(145,\cdot)\) \(\chi_{6304}(209,\cdot)\) \(\chi_{6304}(241,\cdot)\) \(\chi_{6304}(305,\cdot)\) \(\chi_{6304}(337,\cdot)\) \(\chi_{6304}(465,\cdot)\) \(\chi_{6304}(497,\cdot)\) \(\chi_{6304}(561,\cdot)\) \(\chi_{6304}(593,\cdot)\) \(\chi_{6304}(657,\cdot)\) \(\chi_{6304}(689,\cdot)\) \(\chi_{6304}(721,\cdot)\) \(\chi_{6304}(753,\cdot)\) \(\chi_{6304}(785,\cdot)\) \(\chi_{6304}(913,\cdot)\) \(\chi_{6304}(977,\cdot)\) \(\chi_{6304}(1041,\cdot)\) \(\chi_{6304}(1137,\cdot)\) \(\chi_{6304}(1169,\cdot)\) \(\chi_{6304}(1297,\cdot)\) \(\chi_{6304}(1329,\cdot)\) \(\chi_{6304}(1361,\cdot)\) \(\chi_{6304}(1425,\cdot)\) \(\chi_{6304}(1457,\cdot)\) \(\chi_{6304}(1649,\cdot)\) \(\chi_{6304}(2001,\cdot)\) \(\chi_{6304}(2065,\cdot)\) \(\chi_{6304}(2129,\cdot)\) \(\chi_{6304}(2225,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{196})$
Fixed field: Number field defined by a degree 196 polynomial (not computed)

Values on generators

\((1183,3941,3745)\) → \((1,-1,e\left(\frac{137}{196}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 6304 }(753, a) \) \(-1\)\(1\)\(e\left(\frac{3}{196}\right)\)\(e\left(\frac{139}{196}\right)\)\(e\left(\frac{5}{98}\right)\)\(e\left(\frac{3}{98}\right)\)\(e\left(\frac{151}{196}\right)\)\(e\left(\frac{191}{196}\right)\)\(e\left(\frac{71}{98}\right)\)\(e\left(\frac{27}{196}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{13}{196}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 6304 }(753,a) \;\) at \(\;a = \) e.g. 2