sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1576, base_ring=CyclotomicField(196))
M = H._module
chi = DirichletCharacter(H, M([0,98,137]))
pari:[g,chi] = znchar(Mod(1541,1576))
| Modulus: | \(1576\) | |
| Conductor: | \(1576\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(196\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1576}(5,\cdot)\)
\(\chi_{1576}(13,\cdot)\)
\(\chi_{1576}(21,\cdot)\)
\(\chi_{1576}(45,\cdot)\)
\(\chi_{1576}(117,\cdot)\)
\(\chi_{1576}(125,\cdot)\)
\(\chi_{1576}(141,\cdot)\)
\(\chi_{1576}(149,\cdot)\)
\(\chi_{1576}(165,\cdot)\)
\(\chi_{1576}(189,\cdot)\)
\(\chi_{1576}(205,\cdot)\)
\(\chi_{1576}(229,\cdot)\)
\(\chi_{1576}(245,\cdot)\)
\(\chi_{1576}(253,\cdot)\)
\(\chi_{1576}(269,\cdot)\)
\(\chi_{1576}(277,\cdot)\)
\(\chi_{1576}(349,\cdot)\)
\(\chi_{1576}(373,\cdot)\)
\(\chi_{1576}(381,\cdot)\)
\(\chi_{1576}(389,\cdot)\)
\(\chi_{1576}(397,\cdot)\)
\(\chi_{1576}(405,\cdot)\)
\(\chi_{1576}(421,\cdot)\)
\(\chi_{1576}(429,\cdot)\)
\(\chi_{1576}(461,\cdot)\)
\(\chi_{1576}(469,\cdot)\)
\(\chi_{1576}(485,\cdot)\)
\(\chi_{1576}(493,\cdot)\)
\(\chi_{1576}(509,\cdot)\)
\(\chi_{1576}(517,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1183,789,593)\) → \((1,-1,e\left(\frac{137}{196}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 1576 }(1541, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{3}{196}\right)\) | \(e\left(\frac{139}{196}\right)\) | \(e\left(\frac{5}{98}\right)\) | \(e\left(\frac{3}{98}\right)\) | \(e\left(\frac{151}{196}\right)\) | \(e\left(\frac{191}{196}\right)\) | \(e\left(\frac{71}{98}\right)\) | \(e\left(\frac{27}{196}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{13}{196}\right)\) |
sage:chi.jacobi_sum(n)