sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(126))
M = H._module
chi = DirichletCharacter(H, M([12,2]))
pari:[g,chi] = znchar(Mod(2041,6223))
| Modulus: | \(6223\) | |
| Conductor: | \(6223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(63\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6223}(142,\cdot)\)
\(\chi_{6223}(443,\cdot)\)
\(\chi_{6223}(550,\cdot)\)
\(\chi_{6223}(676,\cdot)\)
\(\chi_{6223}(695,\cdot)\)
\(\chi_{6223}(963,\cdot)\)
\(\chi_{6223}(968,\cdot)\)
\(\chi_{6223}(977,\cdot)\)
\(\chi_{6223}(1178,\cdot)\)
\(\chi_{6223}(1418,\cdot)\)
\(\chi_{6223}(1495,\cdot)\)
\(\chi_{6223}(2025,\cdot)\)
\(\chi_{6223}(2041,\cdot)\)
\(\chi_{6223}(2172,\cdot)\)
\(\chi_{6223}(2410,\cdot)\)
\(\chi_{6223}(2494,\cdot)\)
\(\chi_{6223}(2697,\cdot)\)
\(\chi_{6223}(3259,\cdot)\)
\(\chi_{6223}(3336,\cdot)\)
\(\chi_{6223}(3371,\cdot)\)
\(\chi_{6223}(3574,\cdot)\)
\(\chi_{6223}(3796,\cdot)\)
\(\chi_{6223}(3854,\cdot)\)
\(\chi_{6223}(3880,\cdot)\)
\(\chi_{6223}(4090,\cdot)\)
\(\chi_{6223}(4433,\cdot)\)
\(\chi_{6223}(4643,\cdot)\)
\(\chi_{6223}(4862,\cdot)\)
\(\chi_{6223}(5238,\cdot)\)
\(\chi_{6223}(5345,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5589,638)\) → \((e\left(\frac{2}{21}\right),e\left(\frac{1}{63}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 6223 }(2041, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{46}{63}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{22}{63}\right)\) |
sage:chi.jacobi_sum(n)