Properties

Label 6223.hw
Modulus $6223$
Conductor $6223$
Order $63$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6223, base_ring=CyclotomicField(126)) M = H._module chi = DirichletCharacter(H, M([24,88])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(142,6223)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6223\)
Conductor: \(6223\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(63\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{63})$
Fixed field: Number field defined by a degree 63 polynomial

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(8\) \(9\) \(10\) \(11\) \(12\)
\(\chi_{6223}(142,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{8}{63}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{23}{63}\right)\)
\(\chi_{6223}(443,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{5}{63}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{38}{63}\right)\)
\(\chi_{6223}(550,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{40}{63}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{52}{63}\right)\)
\(\chi_{6223}(676,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{13}{63}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{61}{63}\right)\)
\(\chi_{6223}(695,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{44}{63}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{32}{63}\right)\)
\(\chi_{6223}(963,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{4}{63}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{43}{63}\right)\)
\(\chi_{6223}(968,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{32}{63}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{29}{63}\right)\)
\(\chi_{6223}(977,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{43}{63}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{37}{63}\right)\)
\(\chi_{6223}(1178,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{47}{63}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{17}{63}\right)\)
\(\chi_{6223}(1418,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{22}{63}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{16}{63}\right)\)
\(\chi_{6223}(1495,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{16}{63}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{46}{63}\right)\)
\(\chi_{6223}(2025,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{62}{63}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{63}\right)\)
\(\chi_{6223}(2041,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{46}{63}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{22}{63}\right)\)
\(\chi_{6223}(2172,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{20}{63}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{26}{63}\right)\)
\(\chi_{6223}(2410,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{23}{63}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{63}\right)\)
\(\chi_{6223}(2494,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{29}{63}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{44}{63}\right)\)
\(\chi_{6223}(2697,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{26}{63}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{59}{63}\right)\)
\(\chi_{6223}(3259,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{58}{63}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{25}{63}\right)\)
\(\chi_{6223}(3336,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{10}{63}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{13}{63}\right)\)
\(\chi_{6223}(3371,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{34}{63}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{19}{63}\right)\)
\(\chi_{6223}(3574,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{63}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{58}{63}\right)\)
\(\chi_{6223}(3796,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{17}{63}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{41}{63}\right)\)
\(\chi_{6223}(3854,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{25}{63}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{63}\right)\)
\(\chi_{6223}(3880,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{2}{63}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{53}{63}\right)\)
\(\chi_{6223}(4090,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{38}{63}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{62}{63}\right)\)
\(\chi_{6223}(4433,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{59}{63}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{20}{63}\right)\)
\(\chi_{6223}(4643,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{53}{63}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{50}{63}\right)\)
\(\chi_{6223}(4862,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{19}{63}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{31}{63}\right)\)
\(\chi_{6223}(5238,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{50}{63}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{2}{63}\right)\)
\(\chi_{6223}(5345,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{52}{63}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{55}{63}\right)\)
\(\chi_{6223}(5455,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{41}{63}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{47}{63}\right)\)