sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6223, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([16,22]))
pari:[g,chi] = znchar(Mod(2132,6223))
| Modulus: | \(6223\) | |
| Conductor: | \(6223\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(21\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{6223}(849,\cdot)\)
\(\chi_{6223}(914,\cdot)\)
\(\chi_{6223}(1514,\cdot)\)
\(\chi_{6223}(1773,\cdot)\)
\(\chi_{6223}(2132,\cdot)\)
\(\chi_{6223}(2209,\cdot)\)
\(\chi_{6223}(2634,\cdot)\)
\(\chi_{6223}(2832,\cdot)\)
\(\chi_{6223}(5000,\cdot)\)
\(\chi_{6223}(5156,\cdot)\)
\(\chi_{6223}(5534,\cdot)\)
\(\chi_{6223}(5903,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5589,638)\) → \((e\left(\frac{8}{21}\right),e\left(\frac{11}{21}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 6223 }(2132, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) |
sage:chi.jacobi_sum(n)