sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(620, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([1,1,1]))
chi.galois_orbit()
pari:[g,chi] = znchar(Mod(619,620))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
sage:kronecker_character(620)
pari:znchartokronecker(g,chi)
\(\displaystyle\left(\frac{620}{\bullet}\right)\)
| Modulus: | \(620\) | |
| Conductor: | \(620\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(2\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | yes |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
| Character | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
|
\(\chi_{620}(619,\cdot)\)
|
\(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(-1\) |