sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(608, base_ring=CyclotomicField(72))
M = H._module
chi = DirichletCharacter(H, M([0,27,8]))
pari:[g,chi] = znchar(Mod(61,608))
Modulus: | \(608\) | |
Conductor: | \(608\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(72\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{608}(5,\cdot)\)
\(\chi_{608}(61,\cdot)\)
\(\chi_{608}(85,\cdot)\)
\(\chi_{608}(93,\cdot)\)
\(\chi_{608}(101,\cdot)\)
\(\chi_{608}(149,\cdot)\)
\(\chi_{608}(157,\cdot)\)
\(\chi_{608}(213,\cdot)\)
\(\chi_{608}(237,\cdot)\)
\(\chi_{608}(245,\cdot)\)
\(\chi_{608}(253,\cdot)\)
\(\chi_{608}(301,\cdot)\)
\(\chi_{608}(309,\cdot)\)
\(\chi_{608}(365,\cdot)\)
\(\chi_{608}(389,\cdot)\)
\(\chi_{608}(397,\cdot)\)
\(\chi_{608}(405,\cdot)\)
\(\chi_{608}(453,\cdot)\)
\(\chi_{608}(461,\cdot)\)
\(\chi_{608}(517,\cdot)\)
\(\chi_{608}(541,\cdot)\)
\(\chi_{608}(549,\cdot)\)
\(\chi_{608}(557,\cdot)\)
\(\chi_{608}(605,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((191,229,97)\) → \((1,e\left(\frac{3}{8}\right),e\left(\frac{1}{9}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(21\) | \(23\) |
\( \chi_{ 608 }(61, a) \) |
\(1\) | \(1\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{11}{72}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{13}{72}\right)\) | \(e\left(\frac{13}{18}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{71}{72}\right)\) | \(e\left(\frac{17}{36}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)